WORKSHEET 1

TITRATION NO. 1

FA 1 is a solution containing 5.00 g dm $^{-3}$ of hydrated ethanedioic acid, $H_2C_2O_4$.**x** H_2O . **FA 2** is a solution containing 2.37 g dm $^{-3}$ of potassium manganate(VII), KMnO $_4$. You are also provided with 1.00 mol dm $^{-3}$ sulphuric acid, H_2SO_4 .

In the presence of acid, potassium manganate(VII) oxidises ethanedioic acid;

$$2\mathsf{MnO_4}^-(\mathsf{aq}) \ + 5\mathsf{H}_2\mathsf{C}_2\mathsf{O}_4(\mathsf{aq}) \ + \ 6\mathsf{H}^+(\mathsf{aq}) \ \to \ 2\mathsf{Mn}^{2+}(\mathsf{aq}) \ + \ 10\mathsf{CO}_2(\mathsf{g}) \ + \ 8\mathsf{H}_2\mathsf{O}(\mathsf{I})$$

You are to determine the value of \mathbf{x} in $H_2C_2O_4$. $\mathbf{x}H_2O$.

(a) Fill the burette with FA 2.

Pipette 25.0 cm³ of **FA 1** into a conical flask. Use the measuring cylinder provided to add to the flask 25 cm³ of 1.00 mol dm⁻³ sulphuric acid and 40 cm³ of distilled water.

Heat the solution in the flask until the temperature is just over 65 °C. The exact temperature is not important.

Be careful when handling hot solutions.

Remove the thermometer and carefully place the hot flask under the burette. If the neck of the flask is too hot to hold safely, use a folded paper towel to hold the flask. Run in about 1 cm³ of **FA 2**. Swirl the flask until the colour of the manganate(VII) ions has disappeared then continue the titration as normal until a permanent pale pink colour is obtained. This is the end point. Record the burette readings in Table 1.1.

If a brown colour appears during the titration, reheat the flask to 65 °C. The brown colour should disappear and the titration can then be completed.

If the brown colour does **not** disappear on reheating, discard the solution and restart the titration.

Repeat the titration as many times as you think necessary to obtain accurate results.

Make certain that the recorded results show the precision of your practical work.

Table 1.1 Titration of FA 1 with FA 2

final burette reading/cm ³	25.40	35.50	38.50	
initial burette reading/cm ³	0.00	10.30	13.40	
volume of FA 2 used/cm ³	25-40	25.20	25.10	
		\checkmark	✓	

Summary

25.0 cm³ of **FA 1** reacted with ...3.5.1.5... cm³ of **FA 2**.

Show which results you used to obtain this volume of **FA 2** by placing a tick (\checkmark) under the readings in Table 1.1.

You are advised to show full working in all parts of the calculations.

(b) Calculate how many moles of potassium manganate(VII), $KMnO_4$, were run from the burette during the titration.

[A_r: K, 39.1; Mn, 54.9; O, 16.0.]

$$n = \frac{m}{M_{1}}$$

$$= \frac{a \cdot 37}{158}$$

$$= 0.0150 \times \frac{25.10}{1000}$$

$$= 0.0150 \text{ mold}^{-3}$$

$$= 3.77 \times 10^{-4} \text{ mol}$$
[2]

(c) Calculate how many moles of ethanedioic acid, H₂C₂O₄, reacted with the potassium manganate(VII) run from the burette.

$$KMnO_4$$
: $H_2C_2O_4$
 g : S

$$3.77 \times 10^{-4}$$
: χ
[1]

(d) Calculate the mass of H₂C₂O₄ in each dm³ of FA 1

$$[A_r: H, 1.0; C, 12.0; O, 16.0.]$$

$$C = \frac{1}{V} = \frac{9.41 \times 10^{-4}}{25.0 / 1000}$$

$$\frac{1}{20.0377} = \frac{9.4 \times 10^{-3}}{90}$$

$$\frac{1}{3.399 dm^{-3}}$$
[3]

(e) Calculate the mass of water in the 5.00 g of $H_2C_2O_4$ xH_2O .

[1]

(f) Calculate the value of \mathbf{x} , in $H_2C_2O_4$. $\mathbf{x}H_2O$.

Calculate the value of
$$\mathbf{x}$$
, in $H_2C_2O_4$. $\mathbf{x}H_2O$.

 $H_2C_2O_4$
 $H_2C_2O_$

[1]

[Total: 15]

TITRATION NO. 2

In this experiment you will determine the concentration of a solution of sulfuric acid by titration.

FA 1 is sulfuric acid, H₂SO₄.

FA 2 is aqueous sodium hydroxide, containing 4.20 g NaOH dissolved in 1.00 dm³ of water. methyl orange indicator

(a) Method

Dilution of FA 1

- Use a measuring cylinder to measure **10.0 cm³** of **FA 1** into the 250 cm³ volumetric flask.
- Make the solution up to the mark using distilled water.
- Shake the flask thoroughly.
- This diluted solution of sulfuric acid is FA 3. Label the flask FA 3.

Titration

- Fill the burette with **FA 2**.
- Pipette 25.0 cm³ of FA 3 into a conical flask.
- Add a few drops of methyl orange indicator.
- Perform a rough titration and record your burette readings in the space below. The end point is reached when the solution turns a permanent pale yellow colour.

Final	burette	reading/cm3	25.60
Initial	burette	reading /cm³	0.00
Volume	· f	FA2 used/cm3	25.60

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record in a suitable form below all of your burette readings and the volume of FA 2 added
 in each accurate titration.

Final	burette	reading (cm³	39.30	33.70	40.50	
Initio	1 burette	reading/cm3	14.00	8.50	15.20	
Volume	of FA2	used/cm³	25.30	25.20	25.30	
			$\sqrt{}$		√	

[7]

(b) From your accurate titration results, obtain a suitable value for the volume of FA 2 to be used in your calculations. 25.30 + 25.30

Show clearly how you obtained this value.

(c) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.

(i) Calculate the number of moles of sodium hydroxide present in the volume of FA 2 calculated in (b).

Mr of NaOH is 40.

(ii) Complete the equation for the reaction of sulfuric acid with sodium hydroxide. State symbols are required.

$$H_2SO_4$$
 + ∂N_2OH \rightarrow $Na_2SO_4(aq) + $\partial H_2O$$

(iii) Use your answers to (i) and (ii) to calculate the number of moles of sulfuric acid used in each titration.

2.66 x10-3: X

moles of
$$H_2SO_4 = 1.33 \times 10^{-3}$$
 mol

Calculate the concentration, in mol dm⁻³, of sulfuric acid in **FA 3**.

$$C = \frac{n}{V} = \frac{1.33 \times 10^{-3}}{25.0/1000}$$

concentration of
$$H_2SO_4$$
 in **FA 3** = $0.053d$ mol dm⁻³

(v) Calculate the concentration, in mol dm⁻³, of sulfuric acid in **FA 1**.

 $C_1 V_1 = C_2 V_2$ $C_1 \times \frac{10.0}{1000} = 0.0532 \times \frac{250}{1000}$

concentration of
$$H_2SO_4$$
 in **FA 1** = 1.33 mol dm⁻³ [5]

[Total: 13]

TITRATION NO. 3

1 In this experiment you will determine the relative atomic mass, A_r , of magnesium by a titration method.

FB 1 is 2.00 mol dm⁻³ hydrochloric acid, HC*l*. **FB 3** is 0.120 mol dm⁻³ sodium hydroxide, NaOH. magnesium ribbon bromophenol blue indicator

(a) Method

Reaction of magnesium with FB 1

- Pipette 25.0 cm³ of **FB 1** into the 250 cm³ beaker.
- Weigh the strip of magnesium ribbon and record its mass.

mass of magnesium = 0.30 g

- Coil the strip of magnesium ribbon loosely and then add it to the FB 1 in the beaker.
- Stir the mixture occasionally and wait until the reaction has finished.

Dilution of the excess acid

- Transfer all the solution from the beaker into the volumetric flask.
- Make the solution up to the mark using distilled water.
- Shake the flask to mix the solution before using it for your titrations.
- Label this solution of hydrochloric acid FB 2.

Titration

- Fill the burette with FB 2.
- Rinse the pipette out thoroughly. Then pipette 25.0 cm³ of FB 3 into a conical flask.
- Add several drops of bromophenol blue indicator.
- Perform a rough titration, by running the solution from the burette into the conical flask until the mixture just becomes yellow.
- Record your burette readings in the space below.

Final	burette reading/cm3	25.60
Initial	burette reading/em3	0.00
Volume	of FB2 used/cm3	25.60

The rough titre is ... $\delta \Omega$. cm³.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record in a suitable form below all of your burette readings and the volume of **FB 2** added in each accurate titration.

	1	2	3	4
Final burette reading/cm3	25.30	35.20	42.00	
Initial burette reading/cm3	0.00	10.20	16.80	
Volume of FBQ used/cm3	25.30	25.20	<i>25-20</i>	
		V	√	

I	
II	
III	
IV	
V	
VI	
VII	

(b) From your accurate titration results, obtain a suitable value for the volume of **FB 2** to be used in your calculations.

Show clearly how you have obtained this value.

(c) Calculations

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

(i) Calculate the number of moles of sodium hydroxide present in 25.0 cm³ of solution FB 3.

moles of NaOH =
$$3.00 \times 10^{-3}$$
 mol

(ii) Give the equation for the reaction of hydrochloric acid, HCl, with sodium hydroxide, NaOH. State symbols are **not** required.

Deduce the number of moles of hydrochloric acid in the volume of **FB 2** you calculated in **(b)**.

Machine The state of moles of hydrochloric acid in the volume of **FB 2 you calculated in **(b)**.

$$3.00 \times 10^{-3}$$
 = $\frac{1}{2}$ moles of HC $l = ... \frac{3.00 \times 10^{-3}}{100}$ mol

(iii) Calculate the number of moles of hydrochloric acid in 250 cm³ of **FB 2**.

$$25.20 \, \text{cm}^3 - 3.00 \times 10^{-3}$$

 $250 \, \text{cm}^3 - \times \times$

moles of HC
$$l$$
 in 250 cm³ of **FB 2** = $O \cdot 0.398$ mol

(iv) Calculate the number of moles of hydrochloric acid in 25.0 cm³ of **FB 1**.

$$n = CV$$

$$= 2.00 \times \frac{25.0}{1000}$$

moles of HC
$$l$$
 in 25.0 cm³ of **FB 1** = 0.0500 . mol

(v) In (a), you reacted 25.0 cm³ of **FB 1** with your weighed piece of magnesium. After the reaction, the unreacted hydrochloric acid was used to prepare 250 cm³ of FB 2.

Use your answers to (iii) and (iv) to calculate the number of moles of hydrochloric acid that reacted with the magnesium ribbon.

moles of HC*l* reacting with Mg = 0.0202 mol

(vi) Complete the equation below, for the reaction of magnesium with hydrochloric acid. State symbols **are** required.

$$Mg_{(s)} + \partial HCl_{(eq)} \rightarrow MgCl_{2}(eq) + \dots H_{2}(q)$$

Use your answer to (v) to calculate the number of moles of magnesium used.

to calculate the number of moles of magnesium used.

The ratio
$$Mg$$
: HCl

 $X = 0.0202$

The moles of $Mg = 0.0101$ moles of $Mg = 0.0101$

(vii) Use your answer to (vi) to calculate the relative atomic mass, A_r , of magnesium.

$$n = \frac{m}{A_r}$$
 $0.0101 = \frac{0.20}{A_r}$
 $A_r \text{ of Mg} = \frac{19.80}{[6]}$

(d) (i) State one observation that proves that the hydrochloric acid in FB 1 was in excess for the reaction with the magnesium ribbon.

. . .

M	agn	es ium	ribbon	was	dissolved.	 	

(ii) A student carried out exactly the same experiment but used 1.00 g of magnesium ribbon. State and explain why the student's experiment could not be used to determine the value for the A_r of magnesium. Include a calculation in your answer.

n= m = 1 = 0.0412 mol of Mg, so atleast 0.082 moles of HCl required.

[Total: 17]

QUALITATIVE ANALYSIS NO. 1

Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations.

No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

- (a) FB 5 is a solution containing one cation and one anion.

 Carry out test-tube tests to find out whether the cation in FB 5 is magnesium and whether the anion is sulfate.
 - State what reagents you used.
 - Record the observations you made in a table.
 - State your conclusions about which ions are present.

	tests	Observations	Conclusion
a)	To Icm depth of solution, add Icm depth of ay. NaOH then	white ppt.	Mg ²⁺ present
	in excess	insdiuble in excess	y present
	To 1cm depth of solution, add 1cm depth of asy. NHz then	white ppt.	
	in excess	insoluble in excess	
Ġ	To lan depth of solution add lan depth of ag. Ba (NOs)2	no change	SO4 ²⁻ absent
	add dilute HCl		

- (b) FB 6 is a salt containing one cation and one anion from those listed on Qualitative Analysis Notes.
 - (i) Place a **few** crystals of **FB 6** in a hard-glass test-tube. Heat gently at first and then strongly. Leave the test-tube and its contents to cool.

Record **all** your observations below.

Crentle	heating	-> solid me	elts on	heating	
Strong	heating _	->- Solid turns	yellav,		
0		- Solid turns - brown gas pr - glowing splint	T oduced,	,	
		- glowing splint	relights		
Cooling		iquid solidify, a	nd turns	pale yellow	white
U		·			

(ii) Dissolve the remainder of FB 6 in about 20 cm³ of distilled water in a boiling tube for use in the following tests.

test	observations
To a 1 cm depth of the solution of FB 6 in a test-tube, add a few drops of aqueous silver nitrate.	no change
To a 1cm depth of the solution of FB 6 in a test-tube, add a few drops of dilute sulfuric acid.	no Change
To a 1 cm depth of the solution of FB 6 in a test-tube, add aqueous ammonia.	white ppt Aduble in excess
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

test	observations
To a 1 cm depth of the solution of FB 6 in a boiling tube, add aqueous sodium hydroxide until in excess, then	white ppt
	Aduble in excess
heat the mixture gently and carefully, and test any gas produced, then	No change / damp red Litmus paper remains red.
add a small piece of aluminium foil while the mixture is still warm. Test any gas produced.	a colorless gas produced which turned damp red Litmus paper blue.

(iii) Deduce the formula of the salt in FB 6.

Formula is Zn (NO₃)₂

[10]

[Total: 14]

Qualitative Analysis Notes

1 Reactions of aqueous cations

	reaction with									
ion	NaOH(aq)	NH ₃ (aq)								
aluminium, A <i>l</i> ³⁺(aq)	white ppt. soluble in excess	white ppt. insoluble in excess								
ammonium, NH ₄ +(aq)	no ppt. ammonia produced on heating	-								
barium, Ba²+(aq)	faint white ppt. is nearly always observed unless reagents are pure	no ppt.								
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.								
chromium(III), Cr³+(aq)	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess								
copper(II), Cu²+(aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution								
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess								
iron(III), Fe³+(aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess								
magnesium, Mg²+(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess								
manganese(II), Mn²+(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess								
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess								

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, Cl ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq))
bromide, Br ⁻ (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq))
iodide, I -(aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq))
nitrate, NO ₃ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
nitrite, NO ₂ ⁻ (aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil; NO liberated by dilute acids (colourless $NO \rightarrow (pale)$ brown NO_2 in air)
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint

The Periodic Table of Elements

				E								_	E			_ n		_				_	
	18	2	He	heliur 4.0	10	Ne	20.2	18	Ā	argon 39.9	36	궃	krypto 83.8	22	×	xenor 131.3	86	찟	rador				
	17				6	ш	fluorine 19.0	17	Cl	chlorine 35.5	35	Ŗ	bromine 79.9	53	н	iodine 126.9	82	¥	astatine -				
	16				80	0	oxygen 16.0	16	S	sulfur 32.1	34	Se	selenium 79.0	52	<u>a</u>	tellurium 127.6	84	Ъ	molouinm –	116	_	livermorium	ı
	15				7	z	nitrogen 14.0	15	₾	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	Ξ	bismuth 209.0				
	14				9	ပ	carbon 12.0	14	S	silicon 28.1	32	Ge	germanium 72.6	20	Sn	tin 118.7	82	Ър	lead 207.2	114	Εl	flerovium	1
	13				5	В	boron 10.8	13	Ρl	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	81	11	thallium 204.4				
										12	30	Zu	zinc 65.4	48	පි	cadmium 112.4	80	Ь	mercury 200.6	112	ပ်	copernicium	
										7	29	Cn	copper 63.5	47	Ag	silver 107.9	62	Au	gold 197.0	111	Rg	roentgenium	
dn										10	28	Ē	nickel 58.7	46	Pd	palladium 106.4	78	五	platinum 195.1	110	Ds	darmstadtium	1
Group										6	27	တိ	cobalt 58.9	45	짬	rhodium 102.9	77	Ir	iridium 192.2	109	Mt	meitnerium	1
		-	I	hydrogen 1.0						8	26	Fe	iron 55.8	44	Ru	ruthenium 101.1	92	SO	osmium 190.2	108	Ϋ́	hassium	-
										7	25	Mn	manganese 54.9	43	ည	technetium -	75	Re	rhenium 186.2	107	В	bohrium	-
						loc	SS			9	24	ပ်	chromium 52.0	42	Mo	molybdenum 95.9	74	>	tungsten 183.8	106	Sg	seaborgium	ı
				Key	atomic number	atomic symbo	name relative atomic mass			2	23	>	vanadium 50.9	14	q	niobium 92.9	73	Щ	tantalum 180.9	105	g D	dubnium	-
					80	ato	rela			4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	Ξ	hafnium 178.5	104	꿒	rutherfordium	-
										က	21	Sc	scandium 45.0	39	>	yttrium 88.9	57-71	lanthanoids		89–103	actinoids		
	2				4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	Š	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium	
	_				е	:-	lithium 6.9	1	Na	sodium 23.0	19	\prec	potassium 39.1	37	Rb	rubidium 85.5	55	S	caesium 132.9	87	ቴ	francium	

71	Γn	lutetium 175.0	103	۲	lawrenciu	ı	
		ytterbium 173.1					
69	T	thulium 168.9	101	Md	mendelevium	I	
89	Ē	erbium 167.3	100	Fm	ferminm	I	
29	Но	holmium 164.9	66	Es	einsteinium	_	
99	Dy	dysprosium 162.5	86	ర్	californium	I	
65	Tb	terbium 158.9	26	益	berkelium	_	
25	В	gadolinium 157.3	96	Cm	curium	I	
63	En	europium 152.0	98	Am	americium	I	
62	Sm	samarium 150.4	94	Pn	plutonium	I	
61	Pm	promethium -	93	ď	neptunium	ı	
09	PN	neodymium 144.4	92	⊃	uranium	238.0	
69	Ą	praseodymium 140.9	91	Ра	protactinium	231.0	
		cerium 140.1	06	T			
22	Га	lanthanum 138.9	89	Ac	actinium	I	

lanthanoids

actinoids