CHEMISTRY LAB MANUAL

2017-18

QUALITATIVE ANALYSIS

FA1, FA2, FA3, FA4, FA5 and FA6 are aqueous solutions each containing one of the ions Al³⁺, Mg²⁺, Cu²⁺, Fe²⁺, Fe³⁺ and Zn²⁺

You will carry out the following tests on each of the solutions.

At each stage of the test you are to record any color changes seen, the formation of any precipitate and the solubility of such precipitates in an excess of the reagent added. Where gases are released they should be identified by a test, describe in the appropriate place in your observations.

Carry out the following tests. Record your observations in the spaces provided in the table.

FA4 FA5 FA6
FA4
FA3
FA2
FA1
Tests To 1cm depth of solution in a test tube add 1cm depth of aqueous sodium hydroxide. Swirl the tube, then Add a further 2cm of depth of aqueous sodium hydroxide
To 1cm tube ac sodium Swirl th then Add a f

	:	
FA6		
FA5		
FA4		
FA3		
FA2		
FA1		
TESTS	To 1cm depth of solution in a test tube add 1cm depth of aqueous ammonia. Swirl the tube, then	Add a further 2cm of depth of aqueous ammonia
	(a)	
	, -	, -

Results

cation present			
solution			

FA1, FA2, FA3, FA4, FA5, FA6, FA7 and **FA8** are aqueous solutions each containing one of the ions CO_3^{2-} , CI, Br, I, NO_3 , NO_2 , SO_4^{2-} , SO_3^{2-} You will carry out the following tests on each of the solutions.

At each stage of the test you are to record any color changes seen, the formation of any precipitate and the solubility of such precipitates in an excess of the reagent added. Where gases are released they should be identified by a test, describe in the appropriate place in your observations.

Carry out the following tests. Record your observations in the spaces provided in the table.

TESTS	FA1	FA2	FA3	FA4	FAS	FA6	FA7	FA8
e								
÷								
depth of								
To 1cm depth								
hydroxide and								
aluminum foil,								

FA8			
FA7			
FA6			
FA5			
FA4			
FA3			
FA2			
FA1			
TESTS	To 1cm depth of solution in a test tube add 1cm depth of dilute hydrochloric acid	To 1cm depth of solution in a test tube add 1cm depth of barium nitrate Then	Add a 2cm of depth of dilute hydrochloric acid
	(c)	(p)	

Use the Qualitative Analysis Notes to identify the anion present in each of the solutions. Complete the table below to identify each ion and to give supporting evidence from your observations.

Evidence								
anion								
solution	FA1	FA2	FA3	FA4	FA5	FA6	FA7	FA8

Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations.

No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

- (a) FA 6 is a solution of two different salts. It contains two different cations, one of which is listed in the Qualitative Analysis Notes. It contains two anions, both of which are listed in the Qualitative Analysis Notes..
 - (i) Choose reagents that will allow you to identify one of the cations. Carry out suitable tests using these reagents and record your results in the space below.

I	
II	
III	
IV	
V	

One of the cations in **FA 6** is

4	/::\	C - ~~	4 4 6 6	fallaviaa	ttt-	: ~ ~ ~ t:f,	tha tura		present in	
ı	11)	Carr	v om me	: ioiiowina	Tesis io	ideniiiv	ine iwo	anions	present in	FAB
١	,	Odii	y oat are	, , , , , , , , , , , , ,	tooto to	i a o i i ti i y	1110 1110	arnono	procent in	

test	observations
To a 1 cm depth of FA 6 in a test-tube add a 1 cm depth of aqueous silver nitrate, then	
add aqueous ammonia.	
To a 1 cm depth of FA 6 in a test-tube add a 1 cm depth of aqueous barium chloride (or aqueous barium nitrate), then	
add dilute nitric acid.	

The anions in **FA 6** are and

VI VII VIII IX [9]

(b) FA 7 is an acidified solution of iron(II) sulfate, $FeSO_4(aq)$.

Carry out the following tests and record your observations.

		test	observations		
	(i)	To a 1cm depth of FA 7 in a test-tube add aqueous sodium hydroxide and leave for a few minutes.		I	
	(ii)	To a 1cm depth of FA 7 in a		II	+
		boiling tube add a 1 cm depth of dilute sulfuric acid followed by a		III	-
		1 cm depth of '20 vol' hydrogen		IV	-
		peroxide. Stir the mixture, then		V	
	(III)	pour a 1 cm depth of the mixture into a clean boiling tube and		VI	
		add a 3 cm depth of aqueous sodium hydroxide.			
(i	v)	What type of reaction takes place	e in (ii) ?		
(v)	Explain your observations in (iii).			

[Total: 15]

[6]

Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations.

No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

- (a) FA 4, FA 5 and FA 6 are solutions, each containing one transition metal ion. One of the solutions also contains the ammonium ion. All the cations present are listed in the Qualitative Analysis Notes.
 - (i) Carry out the following tests on the three solutions.

	test	observations
I	To a 1 cm depth of FA 4 in a test-tube, add FA 1 , aqueous	
II	potassium manganate(VII), dropwise.	
III	dropwise.	
IV	To a 1 cm depth of FA 5 in a test-tube, add FA 1 , aqueous potassium manganate(VII), dropwise.	
	To a 1 cm depth of FA 6 in a test-tube, add FA 1 , aqueous potassium manganate(VII), dropwise.	

(ii)	State w	hich solution(s) contain ions wh	hich have been oxidised.	
				 [4

(b) (i)	Select a reagent or reagents to identify all the cations present in the three solutions.
	reagent(s)
	Carry out experiments using your reagent(s) on each of FA 4 , FA 5 and FA 6 and record your observations in a suitable form in the space below.

I	
II	
III	
IV	
V	
VI	
VII	
VIII	

(ii)	Use your observations to identify the cations present in the three solutions.
	FA 4 contains
	FA 5 contains
	FA 6 contains

(c)	Eac	ch of the solutions FA 4, FA 5 and FA 6 contains either a chloride or a sulfate ion.
	(i)	Choose a reagent or reagents to identify which solution(s) contain chloride ions.
		reagent(s)
		Use your reagent(s) to carry out a test on each of FA 4 , FA 5 and FA 6 and record your results in the space below.
	(ii)	State which solution(s) contain a chloride ion.
		[3]
		[Total: 15]

Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations.

No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

(a)	In Question 1 you used FA 2 . This solution was prepared from hydrated ammonium iron(II)
	sulfate, $(NH_4)_2$ Fe $(SO_4)_2$.6H ₂ O.
	To a 1 cm depth of FA 2 in a test-tube, add a small spatula measure of sodium carbonate.
	Record your observations.
	·

Solutions containing Fe²⁺ ions can quickly be oxidised in air if they are prepared by dissolving the solid in distilled water.

Use your observations to suggest what other substance was added to solid

 $(NH_4)_2$ Fe $(SO_4)_2$.6H₂O to prepare **FA 2**.

.....[2]

(b) FA 6 is a mixture of two salts, each of which contains a single cation and a single anion from those listed in the Qualitative Analysis Notes. Do the following tests and record your observations in the table below.

	test	observations
(i)	Place a small spatula measure of FA 6 in a hard-glass test-tube and heat strongly.	
(ii)	Place a small spatula measure of FA 6 in a test-tube and carefully add dilute sulfuric acid until the reaction is complete, then	
	add aqueous sodium hydroxide.	
(iii)	To a 3 cm depth of distilled water in a boiling tube, add the remaining sample of FA 6 . Stir and then filter the mixture into a clean boiling tube. You will use this solution for tests (iv) – (vi).	
(iv)	To a 1 cm depth of the solution from (iii) in a test-tube, add aqueous sodium hydroxide.	
(v)	To a 1 cm depth of the solution from (iii) in a test-tube, add aqueous ammonia.	
(vi)	To a 1 cm depth of the solution from (iii) in a test-tube, add aqueous barium chloride or aqueous barium nitrate.	

(VII)	Suggest possible identities for the ions present in FA 6 .	
	cations	
	anions	
(viii)	Describe a further test that would allow you to determine exactly which anions are present. Explain your choice. Do not do this test.	
		 [11]

[Total: 13]

Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations.

No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

(a) FB 4 and FB 5 are solutions of salts each containing one cation and one anion from those listed in the Qualitative Analysis Notes. Carry out the following tests and record your observations in the table below.

toot		observations	
	test	FB 4	FB 5
(i)	To a 1 cm depth of solution in a test-tube, add aqueous ammonia.		
(ii)	To a 1 cm depth of solution in a test-tube, add a few drops of aqueous silver nitrate.		
(iii)	To a 1 cm depth of solution in a test-tube add a few drops of aqueous barium nitrate.		

(iv)	Identif	fy both ions in FB 4 .		
		cation		anion	
	(v)	Sugge	est the ions which may be present	in FB 5 .	
		cation	s	anions	
(vi)		t a reagent which could be used nt. Carry out your test and record		identify the cation
			test	observations	
			To a 1cm depth of FB 5 in a test-tube, add		
		T 1			
		ine c	ation in FB 5 is		[7]
(b)	FB	6 is a p	pale purple salt containing two cat	ions.	
	(i)	What	does this suggest about the identi	ity of one of the cations in FB 6	5 ?

Carry out the following tests and complete the table below.

(vi)

(vii)

	test	observations
(ii)	Place a spatula measure of FB 6 in a hard-glass test-tube. Heat gently.	
(iii)	Dissolve a small spatula measure of FB 6 in a 2cm depth of distilled water in a test-tube. Use this solution for tests (iv) and (v).	
(iv)	Pour about half the solution prepared in (iii) into a boiling tube and add aqueous sodium hydroxide, then	
	gently warm the mixture.	
(v)	To the remainder of the solution prepared in (iii), add a few drops of aqueous potassium iodide, then	
	add a few drops of starch solution.	
ldentif	y the cations present in FB 6 .	
FB 6	contains	and
What	type of reaction occurred when p	ootassium iodide was added to FB 6 in (v) ?
		[7]

Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations.

No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given. (a) FA 5 and FA 6 are solutions each containing one cation and one anion.

Use a 1 cm depth of FA 5 or FA 6 in a test-tube to carry out the following tests on the two solutions and record your observations.

	observations		
test	FA 5	FA 6	
Add aqueous sodium hydroxide.			
Add aqueous ammonia.			
Add a 1 cm depth of dilute hydrochloric acid, then			
transfer the mixture into a boiling tube and warm gently.			
Add two or three drops of acidified aqueous potassium manganate(VII).			
Add a 1 cm depth of aqueous barium chloride or barium nitrate, then			
add dilute hydrochloric acid.			

Identify as many of the ions present in **FA 5** and **FA 6** as possible from your observations. If you are unable to identify any of the ions from your observations, write 'unknown' in the space.

	FA 5	FA 6
cation		
anion		

(b)	FA 7 is a solid with an anion containing the same element as one of the anions in either FA 5 or FA 6 but in a different oxidation state. Relevant anions are listed in the Qualitative Analysis Notes.		
		ce a spatula measure of FA 7 in a boiling tube and add a 2cm depth of distilled water. ske the boiling tube to dissolve the solid and make a solution of FA 7 .	
	(i)	Select reagents to test whether the anion in FA 7 contains the same element as the anion in FA 5 . Carry out your test(s) on the solution of FA 7 and record your observations and conclusions in a suitable form in the space below.	
		reagents for testing FA 7	
		observations and conclusions	
	(ii)	Select reagents to test whether the anion in FA 7 contains the same element as the anion in FA 6 . Carry out your test(s) on the solution of FA 7 and record your observations and conclusions in a suitable form in the space below.	
		reagents for testing FA 7	
		observations and conclusions	

Qualitative analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs.

Marks are **not** given for chemical equations.

No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test the full name or correct formula of the reagent must be given.

(a) You are provided with solution **FA 5**. **FA 5** is an aqueous mixture of two salts and contains two cations and two anions. Carry out the following tests and complete the table below.

test	observations
To a 1 cm depth of FA 5 in a test-tube, add aqueous sodium hydroxide.	
To a 1 cm depth of FA 5 in a test-tube, add aqueous ammonia.	
To a 1 cm depth of FA 5 in a test-tube, add a 2 cm depth of dilute sulfuric acid, shake, and leave for about 1 minute,	
then add aqueous potassium manganate(VII) drop by drop.	
To a 1 cm depth of FA 5 in a test-tube, add a 1 cm depth of aqueous potassium iodide,	
followed by a few drops of starch indicator.	

(b)	FA 5 contains either or both a sulfate and/or a chloride. Select reagents and use them to carry out further tests on FA 5 to positively identify which of these anions is present.		
	reagents and		
	Record your tests and all your observations in a suitable form in the space below.		
	[4		
(c)	Use your observations in (a) and (b) to suggest the identities of as many ions present in FA sas possible. Give reasons for your deductions for one cation and one anion.		
	possible cation(s)		
	reasons(s)		
	possible anion(s)		
	reasons(s)		
	[4]		
	[Total: 13]		

For Examiner's Use

You are provided with three solutions, **FB 6**, **FB 7** and **FB 8**, each containing one cation and one anion.

One or more of the solutions contains a halide ion. One or more of the solutions contains a sulphate or sulphite ion.

Identification of the anions in FB 6, FB 7 and FB 8

- (a) By reference to the Qualitative Analysis Notes you are to select and use
 - (i) one reagent to precipitate any halide ion that is present,
 - (ii) a second reagent to confirm the identity of any halide ion present.

Because the solutions are coloured you will need to remove traces of solution from the precipitates.

Record the tests performed, the practical procedures used and the observations made for each of the solutions.

Present this information as clearly as possible in a suitable format in the space below.

i	
ii	
iii	
iv	
v	
vi	
vii	

oservations to id ad state which id		n.	utions FB 6 , FB 7

(b)	Sel	Select reagents and carry out tests		
	(i) (ii)	to show which of the solutions contains a sulphate ion or a sulphite ion, and to establish which of these ions is present.		
	Red	cord your tests and observations below.		
	Sta	te which of the ions, sulphate or sulphite, is present in which of the solutions FB 6 ,		
		7 and FB 8 and explain how you reached this conclusion from your tests above.		
		[3]		
lde	ntific	cation of the cations in FB 6, FB 7 and FB 8		
(c)	Usi	ng aqueous sodium hydroxide and aqueous ammonia it is possible to identify two		

lde

(c) of the cations present and to draw some conclusions about the nature of the remaining cation.

Carry out tests with these reagents, recording details of what you did and observed in a suitable format in the space below.

(d)	Explain how your observations in (c) identify two of the cations present and which of the solutions contain those cations.
	The cation contained in solution FB is
	explanation
	The cation contained in solution FB is
	explanation
	What conclusion of a general nature about the third cation can you draw from your observations in (c) ?
	[2]
	[Total: 16]

Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

When gases are released they should be identified by a test, **described in the appropriate** place in your observations.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations.

No additional tests for ions should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and re-use test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the full name or correct formula of the reagents must be given.

(a) FA 7 contains one cation and one anion from those listed in the Qualitative Analysis Notes.

Put two spatula measures of **FA 7** into a test-tube. Add about two-thirds of a test-tube of distilled water and dissolve the solid. For each test that you carry out, use 1 cm depth of the solution of **FA 7**.

(i) Carry out the following tests and complete the table below.

test	observation(s)
rops of aqueous barium o your solution of FA 7 .	
rops of aqueous silver o your solution of FA 7 .	

I	
II	
III	

For Examiner's Use

(ii)	Put a very small spatula measure of solid FA 7 into a hard glass test-tube. Hold the test-tube horizontally and heat it gently for a few seconds, then heat it strongly until no further change takes place. Leave the test-tube to cool to room temperature. While cooling takes place, move on to (iv). In the space below record the observations made at each stage in an appropriate	For Examiner's Use
	form.	
(iii)	State what deductions you can make about the identity of the anion in FA 7 from the tests above.	
(iv)	Use the information in the Qualitative Analysis Notes to select a further test to confirm the identity of the anion in FA 7 .	IV
	test	V
	Carry out this test and, in the space below, record the observation(s) made in an appropriate form. State your conclusion.	VI
	appropriate form. State your conclusion.	VIII
		IX
(v)	The cation in FA 7 is aluminium ion, calcium ion or zinc ion. Select one reagent to identify the cation in FA 7 .	
	reagent	
	Use this reagent to carry out a test. Record the observation(s) made and identify the cation.	
	[9]	

(b)	FA 8	8 contains one cation from those listed on Qualitative Analysis Notes.	For
		all of the FA 8 into a test-tube. fill the test-tube with distilled water and dissolve the solid.	Examiner's Use
	(i)	To 1 cm depth of the solution of FA 8 in a test-tube, add aqueous potassium iodide until the test-tube is half full. Allow the mixture to stand for two minutes.	
		Use a dropping pipette to transfer about 1 cm ³ of the mixture from the top of the test-tube to another test-tube. Add 5 drops of starch solution. Record all of your observations.	
			I
			II
	(ii)	State what type of chemical behaviour has been shown by potassium iodide in this reaction. Give an ionic equation to justify your answer.	III
		reaction. Give an ionic equation to justify your answer.	IV
			V
	(iii)	To another 1 cm depth of solution of FA 8 in a test-tube, add aqueous sodium hydroxide.	
		Record the observation(s) made. Give the ionic equation for the reaction taking place.	
		[5]	
		[Total: 14]	
		[Total. 14]	

Qualitative analysis

For Examiner's Use

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations.

No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test the full name or correct formula of the reagent must be given.

(a) Compounds FB 5, FB 6 and FB 7 contain the same non-metal but in three different oxidation states. You are provided with solid samples of FB 5, FB 6 and FB 7. Carry out the tests described below and record your observations in the table.

test	observations
(i) To 1 cm depth of dilute hydrochloric acid in a test-tube add a small spatula measure of FB 5.	
(ii) To 1 cm depth of dilute sulfuric acid in a boiling tube add the same depth of aqueous potassium iodide. Add a small spatula measure of FB 5 .	
(iii) To 1 cm depth of dilute sulfuric acid in a test-tube add about ten drops of aqueous potassium manganate(VII). Add a small spatula measure of FB 5 .	

For Examiner's Use

	test	observations
(iv)	Place a small spatula measure of FB 6 into a hard glass test-tube. Heat the contents gently.	
(v)	Place a small spatula measure of FB 6 into a boiling tube. Dissolve the solid in 1 cm depth of distilled water. Add 1 cm depth of aqueous sodium hydroxide. Warm the mixture with care.	
(vi)	Place a small spatula measure of FB 7 into a hard glass test-tube. Heat the contents gently at first, then heat more strongly. Allow to stand for a few minutes	
(vii)	Place a small spatula measure of FB 7 into a boiling tube. Dissolve the solid in about 1 cm depth of distilled water. Add 1 cm depth of aqueous sodium hydroxide. Warm the mixture with care.	

I	
II	
III	
IV	
V	
VI	

[6]

(b) (i)	From your observations in (a), identify the non-metal present in FB 5, FB 6 a FB 7.	nd
(ii)	Suggest the oxidation state of the non-metal in FB 5 and FB 6.	
	The oxidation state of the non-metal in FB 5 is	
	The oxidation state of the non-metal in FB 6 is	
(iii)	Suggest the type of reaction occurring in (a)(iii).	
		.

	FB 8 and the other in FB 9. Both FB8 and FB9 are aqueous solutions.	Examiner's Use
(i)	Use the Qualitative Analysis Notes to select two reagents that, used in separate tests , could identify the presence of the Fe ²⁺ ion.	
	The reagents are	
	and	
(ii)	Use your chosen reagents to carry out tests on both FB 8 and FB 9 . Record your results in an appropriate form in the space below.	
(iii)	From the results of the tests in (ii), state which solution contains the iron(II) ions.	
	Fe ²⁺ ions are contained in solution	
	Explain how your observations support your conclusion.	
(iv)	Aqueous EDTA is a reagent used to identify some transition metals. To 1 cm depth of the solution containing the nickel(II) ion, add 1 cm depth of aqueous EDTA. observation	
		I
		II
(v)	State what you would expect to see if acidified potassium manganate(VII) was added to a sample of the solution containing the iron(II) ion.	III
	Do not carry out this experiment.	IV
	expected observation	V
	ro1	VI
	[6]	

[Total: 15]

You are provided with four aqueous solutions, FA 4, FA 5, FA 6 and FA 7.

Each solution contains one of the following.

an alcohol an aldehyde a carboxylic acid a ketone

You are to perform the tests below and from the results establish which type of organic compound is contained in each of **FA 4**, **FA 5**, **FA 6** and **FA 7**.

After each test discard the contents of the tubes into the 250 cm³ beaker, labelled organic waste. Rinse and re-use the tubes for the remaining tests.

Record your results in the table. Where no reaction has taken place, write 'no change' in the appropriate box in the table.

test (a)	Place 1 cm depth of each of the solutions FA 4 , FA 5 , FA 6 and FA 7 into separate test-tubes. To each tube add a small quantity of magnesium powder or turnings. Identify any gas given off and record the test you used to make the identification.	
test (b)	Place 1 cm depth of each of the solutions FA 4 , FA 5 , FA 6 and FA 7 into separate test-tubes. To each tube add a small quantity of powdered sodium carbonate. Identify any gas given off and record the test you used to make the identification.	
test (c)	Place 1 cm depth of each of the solutions FA 4 , FA 5 , FA 6 and FA 7 into separate test-tubes. To each tube add 1 cm depth of 2,4-dinitrophenylhydrazine reagent.	
test (d)	Place 1 cm depth of each of the solutions FA 4 , FA 5 , FA 6 and FA 7 into separate test-tubes. Place 2 cm depth of aqueous silver nitrate in a boiling-tube and add to it 1 cm depth of aqueous sodium hydroxide. This will produce a precipitate of silver oxide. Use a dropping pipette to add dilute aqueous ammonia to this mixture until the precipitate of silver oxide just dissolves. Do not add an excess of aqueous ammonia. To each of the tubes containing FA 4 , FA 5 , FA 6 and FA 7 add 1 cm depth of the silver-containing solution you have just prepared.	
test (e)	Place 1 cm depth of each of the solutions FA 4 , FA 5 , FA 6 and FA 7 into separate boiling-tubes. To each tube add a few drops of acidified potassium manganate(VII). Warm the tube gently.	

test	FA 4	FA 5	FA 6	FA 7
(a)				
(b)				
(c)				
(d)				
(e)				

[8]

Identify the type of organic compound present in each of the solutions ${\bf FA}$ 4, ${\bf FA}$ 5, ${\bf FA}$ 6 and ${\bf FA}$ 7 and complete the table below.

	type of organic compound contained in the solution	confirmed by the observations in test(s)
FA 4		
FA 5		
FA 6		
FA 7		

[2]

[Total: 10]

Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations.

No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

(a) FA 5, FA 6, FA 7 and FA 8 are aqueous solutions of organic compounds. All of FA 5, FA 6, FA 7 and FA 8 contain carbon, hydrogen and oxygen only.

Half fill the 250 cm³ beaker with water and heat it to about 80 °C. Turn off the Bunsen burner. This will be used as a water bath.

To a 2cm depth of aqueous silver nitrate in a boiling tube add 2 drops of aqueous sodium hydroxide and then add ammonia dropwise until the brown solid just disappears. This solution is Tollens' reagent and is needed in a test in (i).

(i) Carry out the following tests on **FA 5**, **FA 6**, **FA 7** and **FA 8** and record your observations in the table.

45-4		observations					
test	FA 5	FA 6	FA 7	FA 8			
To a 1 cm depth in a test-tube, add a small spatula measure of sodium carbonate.							
To a few drops in a test-tube, add a 1 cm depth of Tollens' reagent. Place the tube in the water bath and leave to stand. When you have completed this test rinse all tubes used.							
To a 1 cm depth in a test-tube, add a few drops of acidified potassium manganate(VII). Place the tube in the water bath and leave to stand.							

(ii)	Using your observations from the table, what functional group is present in both FA 5 and FA 6 ?
(iii)	Using your observations from the table, what functional group is present in both FA 5 and FA 8 ?
(iv)	What type of reaction is occurring in the potassium manganate(VII) test?
(v)	Using your observations from the table, what functional group is present in FA 7 ?

(vi)	Suggest a test that would confirm the FA 7. Include the result you would ex		I group in a pure sample o
	Do not carry out this test.		
			[6
•	9 and FA 10 are solids that each coalysis Notes.	ontain one anion from tho	se listed in the Qualitativ
(i)	Carry out the following tests on FA 9	and FA 10 and record you	r observations in the table
	test	observ	vations
		FA 9	FA 10
	To a spatula measure of solid in a boiling tube, add a 1 cm depth of aqueous sodium hydroxide. Warm, then,		
	add a small piece of aluminium foil.		
	Place a spatula measure of solid in a hard-glass test-tube. Heat gently at first and then more strongly.		
(ii)	Using your observations from the ta FA 10?	ble, which two anions cou	uld be present in FA 9 and
	anion	or	
(iii)	Suggest a test that would allow you observations you would expect.	to decide which of the ani	ons is present. State wha
(iv)	Carry out this test on FA 9 and FA 1 0	0 to decide which anion is	present in each.
	observation for FA 9	anion in FA 9 is	
	observation for FA 10	anion in FA 10 i	s[7

[Total: 16]

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

	reaction	on with	
ion	NaOH(aq)	NH₃(aq)	
aluminium, A <i>l</i> ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess	
ammonium, NH ₄ ⁺ (aq)	no ppt. ammonia produced on heating	_	
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.	
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.	
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess	
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution	
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess	
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess	
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess	
manganese(II), Mn ²⁺ (aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess	
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess	

2 Reactions of anions

ion	reaction with
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, Cl ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq))
bromide, Br ⁻ (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq))
iodide, I ⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq))
nitrate, NO ₃ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
nitrite, NO ₂ ⁻ (aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil; NO liberated by dilute acids (colourless $NO \rightarrow (pale)$ brown NO_2 in air)
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²⁻ (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result	
ammonia, NH ₃	turns damp red litmus paper blue	
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)	
chlorine, Cl ₂	bleaches damp litmus paper	
hydrogen, H ₂	"pops" with a lighted splint	
oxygen, O ₂	relights a glowing splint	
sulfur dioxide, SO ₂	turns acidified aqueous potassium manganate(VII) from purple to colourless	

TITRATION

INTRODUCTION TO TITRATION TECHNIQUES

An acid neutralizes a bas to form a salt and water. Hydrochloric acid and sodium hydroxide are completely ionized in water. We say they are a strong acid or base because they are completely ionized in solution. The ions present in hydrochloric acid are H⁺(aq)and CI(aq) and in sodium hydroxide are Na⁺(aq) and OH⁻(aq).

You are going to use the technique of **titration** to produce a sodium chloride solution. Titration is a very accurate way of investigating the reaction of two solutions. It can be used to analyze the amount of a particular substance in a solution. This is known as **quantitative analysis**. In a titration, one solution is placed in a burette and the other is placed in a conical flask using a pipette. The solution in the burette is then run into the conical flask until there is a complete reaction. In this case you will completely neutralize a solution of sodium hydroxide with hydrochloric acid solution. You will use an indicator to tell you when there is complete neutralization. The indicator changes color at the exact point of neutralization. In this case you may use any acid-base indicator because you will titrating a strong acid with a strong base.

Method

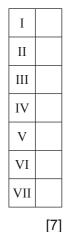
- 1. Wash the burette with distilled water (aka deionised water) and then rinse with a little of the hydrochloric acid.
- 2. Once the burette has been washed and rinsed out with the acid solution, fill it nearly to the top. Clamp the burette carefully and run a little acid through into the beaker until the tip becomes full. (Fill the burette with hydrochloric acid solution and ensure the tip is full.)
- 3. The pipette can be cleaned in a similar way to the burette, remembering to finish by washing it out with a little of the alkali solution. (A pipette safety filler is used to draw a measured volume of sodium hydroxide solution from the beaker into the pipette.
- **4.** Rinse the conical flask with some deionised water. In this case it does not matter if there is some water left in the flask after rinsing it.
- **5.** Pipette exactly 25.0 cm³ of the 0.100 mol dm⁻³ sodium hydroxide solution into a clean conical flask. Now add two or three drops of acid-base indicator.
- 6. Now read the burette and record the reading in the middle row of a table like the one below. Be careful that your eye is level with the bottom of the meniscus or your reading will not be accurate.
- 7. Place the conical flask below the burette on a white tile. Run acid into the flak fairly quickly, shaking it all the time. As soon as the color of the indicator changes, close the tap and note the final burette reading. Record this result in your table above your initial reading. Subtract the initial reading from the final reading to give you the volume of acid added.
- 8. The first titration is a rough titration to give you an idea f the volume you need to add to exactly neutrlise the acid. It is quite likely that you added a slight excess of acid as you were doing the titration quickly. Now repeat steps 2 to 7 but this time run in the acid quickly until you reach about 1cm³ less than the volume you added in the rough titration. Swirl the contents of the flask and add one drop of acid at a time from the burette until the indicator just changes colour. Record this volume. This should represent the exact volume you need to add to neutralise 25.0 cm³ of 0.100 mol dm⁻³ of sodium hydroxide.
- **9.** To ensue that you have a reliable volume of alkali, you should repeat the whole titration again until you get two readings that agree within 0.10cm³.

	Rough	1	2	3	4
Final burette reading / cm ³					
Initial burette reading / cm ³					
Volume of HCI added / cm ³					

	Volume of HCI added / cm ³					
	Questions (a) How many moles of NaOH were present in 25.0 cm ³ solution?					
(I	b) How many moles of HCl were prese solution?	ent in the vo	lume of acid	d you used	to neutralis	se the NaOH
(0	c) What was the exact concentration or	f hydrochlor	ic acid in m	nol dm ⁻³ ?		
(0	d) Why was the conical flask placed or	n a piece of	white tile?			
(6	e) Why were the pipette and burette wa	ashed with	the solution	s they were	e going to c	ontain?
(1) Why was the conical flask not washe	ed with the a	alkali solutic	on it was go	ing to conta	ain?
(9	g) Explain why it does not matter if the	re is water a	already in th	ne flask.		
(1	n) Explain why a conical flask was use	d and not a	beaker.			

HA is an organic acid. Solution **FA 1** was prepared by dissolving 13.1g of solid HA in each dm³ of solution. You are to determine the relative molecular mass, M_r , of HA by titration with aqueous sodium hydroxide. The equation for the reaction between HA and sodium hydroxide is given below.

$$HA(aq) + NaOH(aq) \rightarrow NaA(aq) + H2O(I)$$


FA 1 is a solution containing 13.1 g dm⁻³ of organic acid, HA. **FA 2** is 0.100 mol dm⁻³ sodium hydroxide, NaOH. bromothymol blue indicator

(a) Method

- Fill the burette with **FA 1**.
- Use the pipette to transfer 25.0 cm³ of **FA 2** into a conical flask.
- Add a few drops of bromothymol blue indicator. This indicator is blue in alkali and yellow in acid solutions.
- Perform a rough titration and record your burette readings in the space below.

The rough	titre is	 cm ³
		 •

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of **FA 1** added in each accurate titration.

(b) From your accurate titration results, obtain a suitable value to be used in your calculations. Show clearly how you obtained this value.

25.0 cm³ of **FA 2** required cm³ of **FA 1**. [1]

(c)	Cal	culations
		ow your working and appropriate significant figures in the final answer to each step of your culations.
	(i)	Calculate the number of moles of sodium hydroxide present in the volume of FA 2 pipetted into the conical flask.
		moles of NaOH = mol
	(ii)	Use your answer to (c)(i) and the equation on page 2 to determine the number of moles of organic acid, HA, used to neutralise 25.0 cm³ of FA 2 .
		moles of HA = mol
(iii)	Use your answers to (b) and (c)(ii) to calculate the number of moles of HA in 1 dm³ of FA 1 .
(iv)	moles of HA in 1dm^3 of FA 1 =
•	,	3
		$M_{\rm r}$ of HA =[4]

(d) A student carrying out this method correctly with the same concentration of reactants obtained a titre of 28.30 cm³. Would this give a larger or smaller value of M_r than yours? Explain your answer.

[Total: 13]

The concentration of aqueous ammonia used in qualitative analysis is 2 mol dm⁻³ but it is supplied in a much more concentrated form. This is referred to as '.880 ammonia'. You are to determine the concentration of '.880 ammonia' by titration of a solution of ammonia, **FB 1**, with hydrochloric acid of known concentration. The equation for the reaction is given below.

$$NH_3(aq) + HCl(aq) \rightarrow NH_4Cl(aq)$$

FB 1 is a dilute solution of ammonia, $NH_3(aq)$. It was prepared by measuring out 5.91 cm³ of the '.880 ammonia' and then adding distilled water until the solution had a volume of 1 dm³. **FB 2** is 0.100 mol dm⁻³ hydrochloric acid, HCl(aq). methyl orange indicator

(a) Method

- Fill the burette with **FB 2**.
- Use the pipette to transfer 25.0 cm³ of **FB 1** into a conical flask.
- Add a few drops of methyl orange indicator.
- Perform a rough titration and record your burette readings in the space below.

The rough	titre is	 cm ³

- Carry out as many accurate titrations as you think necessary to achieve consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of FB 2 added in each accurate titration.

[7]

(b) From your accurate titration results, obtain a suitable value to be used in your calculations. Show clearly how you obtained this value.

25.0 cm³ of **FB 1** required cm³ of **FB 2**. [1]

S
•

(C)	Cal	culations
		ow your working and appropriate significant figures in the final answer to each step of your culations.
	(i)	Calculate the number of moles of hydrochloric acid present in the volume of FB 2 calculated in (b) .
		moles of HC <i>l</i> = mol
	(ii)	Use your answer to (i) to determine the number of moles of ammonia present in 25.0 cm ³ of FB 1 , pipetted into the conical flask.
		moles of NH ₃ = mol
((iii)	Use your answer to (ii) to calculate the concentration, in mol dm ⁻³ , of the diluted ammonia, FB 1.
		concentration of NH ₃ (diluted) in FB 1 = mol dm ⁻³
((iv)	Use your answer to (iii) and the information on page 2 to calculate the concentration, in mol dm ⁻³ , of '.880 ammonia'.
		concentration of '.880 ammonia' = mol dm ⁻³ [3]
(d)	con '.88 (If	student analysed a different sample of concentrated ammonia and determined the icentration to be 15.0 mol dm ⁻³ . Calculate the percentage difference in concentration of the 30 ammonia' you have determined compared with that of the student. You have been unable to complete the calculation, assume the concentration of 30 ammonia' was 9.35 mol dm ⁻³ . This is not the correct value.)

percentage difference in concentration = % [1]

[Total: 12]

For Examiner's Use

FB 1 is an aqueous solution containing 21.50 g dm⁻³ of a mixture of iron(II) sulfate, FeSO₄ and iron(III) sulfate, Fe₂(SO₄)₃.

FB 2 is an aqueous solution containing 2.00 g dm⁻³ potassium manganate(VII), KMnO₄.

In the presence of acid, the iron(II) sulfate is oxidised by potassium manganate(VII).

 $2\mathsf{KMnO}_{4}(\mathsf{aq}) + 8\mathsf{H}_{2}\mathsf{SO}_{4}(\mathsf{aq}) + 10\mathsf{FeSO}_{4}(\mathsf{aq}) \longrightarrow 5\mathsf{Fe}_{2}(\mathsf{SO}_{4})_{3}(\mathsf{aq}) + 2\mathsf{MnSO}_{4}(\mathsf{aq}) + \mathsf{K}_{2}\mathsf{SO}_{4}(\mathsf{aq}) + 8\mathsf{H}_{2}\mathsf{O}(\mathsf{I})$

(a) Method

- Fill a burette with FB 2.
- Pipette 25.0 cm³ of **FB 1** into the conical flask.
- Use a 25 cm³ measuring cylinder to add 10 cm³ of dilute sulfuric acid to the flask.
- Place the flask on a white tile.
- Carefully titrate with **FB 2** until the first permanent pink colour is obtained.

You should perform a rough titration.

In the space below record your burette readings for this rough titration.

The rough	titre	is	 cm ³
THE TOUGHT	แแษ	ıo	 UIII .

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Record in a suitable form below all of your burette readings and the volume of FB 2 added in each accurate titration.
- Make certain any recorded results show the precision of your practical work.

I	
II	
Ш	
IV	
٧	
VI	
VII	

[7]

	rate titration results obtain a suitable value to be used in your calculation. bw you have obtained this value.	For Examine Use	r's
	25.0 cm ³ of FB 1 required cm ³ of FB 2 . [1]		
Calculations			
Show your working your calculations.	and appropriate significant figures in the final answer to each step of		
FB 2. FB 2 conta	the concentration, in $moldm^{-3}$, of the potassium manganate(VII) in sins $2.00gdm^{-3}$ KMnO ₄ . 0; K, 39.1; Mn, 54.9]		
The concentrati	on of potassium manganate(VII) in FB 2 is moldm ⁻³ .		
(ii) Calculate h	now many moles of KMnO ₄ were present in the volume calculated in (b) .		
	mol of KMnO ₄ .		
	now many moles of iron(II) sulfate, $FeSO_4$, reacted with the potassium $e(VII)$ in (ii) .		
2KMnO ₄ (aq) + 8H ₂ SO ₄ (ac	$q) + 10FeSO_4(aq) \longrightarrow 5Fe_2(SO_4)_3(aq) + 2MnSO_4(aq) + K_2SO_4(aq) + 8H_2O(l)$	I	
		II	
		Ш	
		IV	
	mol of FeSO ₄ reacted with the potassium manganate(VII).	V	

Calculate the concentration, in mol dm ⁻³ of FeSO ₄ in FB 1 .
The consentration of Ecolor in ED 4 is a second sec
The concentration of FeSO ₄ in FB 1 is mol dm ⁻³ .
Calculate the concentration, in $g dm^{-3}$, of $FeSO_4$ in FB 1 . [A_r : O, 16.0; S, 32.1; Fe, 55.8]
FB 1 contains gdm ⁻³ of FeSO ₄ .
FB 1 is an aqueous solution containing 21.50 g dm ⁻³ of FeSO ₄ and Fe ₂ (SO ₄) ₃ . Calculate the percentage, by mass, of FeSO ₄ in this mixture.
The mixture contains % FeSO ₄ . [5]
[Total: 13]

For Examiner's Use

You will determine the concentration of a solution of hydrochloric acid by diluting it and then titrating the diluted solution against an alkali.

$$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(l)$$

FA 1 was made by dissolving 1.06 g of sodium hydroxide, NaOH, in distilled water to make 250 cm³ of solution.

FA 2 is hydrochloric acid, HC*l.* methyl orange indicator

(a) Method

- Pipette 25.0 cm³ of FA 2 into the 250 cm³ volumetric flask.
- Add distilled water to make 250 cm³ of solution and shake the flask thoroughly. Label this solution FA 3.
- Fill the burette with FA 3.
- Use the second pipette to transfer 25.0 cm³ of **FA 1** into a conical flask.
- Add about 5 drops of methyl orange.
- Perform a rough titration and record your burette readings in the space below. The end point is reached when the solution becomes a permanent pink colour.

The rough titre	e is	cm ³
-----------------	------	-----------------

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of **FA 3** added in each accurate titration.

[7]

(b) From your accurate titration results, obtain a suitable value for the volume of **FA 3** to be used in your calculations. Show clearly how you obtained this value.

25.0 cm³ of **FA 1** required cm³ of **FA 3**. [1]

(c)	Cal	culations
		ow your working and appropriate significant figures in the final answer to each step of your culations.
	(i)	Calculate the concentration, in mol dm ⁻³ , of sodium hydroxide in FA 1 . Use the data in the Periodic Table on page 12.
		concentration of NaOH in FA 1 = moldm ⁻³
	(ii)	Calculate the number of moles of sodium hydroxide present in 25.0 cm ³ of FA 1 .
		moles of NaOH = mol
	(iii)	Deduce the number of moles of hydrochloric acid present in the volume of FA 3 you have calculated in (b) .
		moles of HC <i>l</i> = mol
	(iv)	Calculate the concentration, in mol dm ⁻³ , of hydrochloric acid in FA 2 .

concentration of HCl in **FA 2 =** mol dm⁻³

[5]

[Total: 13]

Borax is an alkali which has many uses. In this experiment you will determine \mathbf{x} in the chemical formula of borax, Na₂B_xO₇.10H₂O, by titration with hydrochloric acid.

FB 1 is a solution containing $15.5\,\mathrm{g\,dm^{-3}}$ of borax, $\mathrm{Na_2B_xO_7.10H_2O.}$ **FB 2** is $2.00\,\mathrm{mol\,dm^{-3}}$ hydrochloric acid, HC *l.* methyl orange indicator

(a) Method

Dilution of FB 2

- Pipette 10.0 cm³ of FB 2 into the 250 cm³ volumetric flask.
- Make the solution up to 250 cm³ using distilled water.
- Shake the solution in the volumetric flask thoroughly.
- This diluted solution of hydrochloric acid is **FB 3**. Label the volumetric flask **FB 3**.

Titration

- Fill the burette with **FB 3**.
- Pipette 25.0 cm³ of FB 1 into a conical flask.
- Add several drops of methyl orange.
- Perform a rough titration and record your burette readings in the space below.

The rough titre is	cm ³ .
--------------------	-------------------

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record in a suitable form below all of your burette readings and the volume of FB 3 added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	

[7]

(b) From your accurate titration results, obtain a suitable value for the volume of **FB 3** to be used in your calculations.

Show clearly how you obtained this value.

25.0 cm³ of **FB 1** required cm³ of **FB 3**. [1]

(c)	Cal	culations
		ow your working and appropriate significant figures in the final answer to each step of your culations.
	(i)	Calculate the number of moles of hydrochloric acid present in the volume of FB 3 calculated in (b) .
		moles of HCl = mol
	(ii)	1 mole of borax is neutralised by 2 moles of hydrochloric acid. Calculate the number of moles of borax that react with the hydrochloric acid in (i).
		moles of borax = mol
((iii)	Use your answer to (ii) to calculate the number of moles of borax in 1.00 dm³ of FB 1.
		moles of borax in 1.00 dm ³ FB 1 = mol
		Indies of bolax in 1.00 dill Fb I
((iv)	Use your answer to (iii) and the information on page 2 to calculate the relative formula mass, M_r , of borax.

(v) Calculate $\bf x$ in the formula of borax, Na₂B_xO₇.10H₂O. Use data from the Periodic Table.

 M_{r} of borax =

x =

[5]

[Total: 13]

For Examiner's Use

You are required to determine the concentration in g dm $^{-3}$ of hydrated ammonium iron(II) sulphate, $(NH_4)_2SO_4.FeSO_4.6H_2O$, in the solution **FB 1**.

FB 1 contains hydrated ammonium iron(II) sulphate.

FB 2 is 0.0120 mol dm⁻³ potassium manganate(VII), KMnO₄.

(a) Dilution of FB 1

By using a burette measure between 36.00 cm³ and 37.00 cm³ of **FB 1** into the 250 cm³ graduated flask labelled **FB 3**.

Record your burette readings and the volume of **FB 1** added to the flask in the space below.

Make up the contents of the flask to the 250 cm³ mark with distilled water. Place the stopper in the flask and mix the contents thoroughly by slowly inverting the flask a number of times.

Titration

Fill a second burette with FB 2.

Pipette $25.0\,\mathrm{cm^3}$ of **FB 3** into a conical flask. Use a measuring cylinder to add approximately $10\,\mathrm{cm^3}$ of $1.0\,\mathrm{mol}$ dm⁻³ sulphuric acid, $\mathrm{H_2SO_4}$, and titrate with **FB 2** until the first permanent pink colour remains in the solution.

Perform one rough (trial) titration and sufficient further titrations to obtain accurate results.

Record your titration results in the space below. Make certain that your recorded results show the precision of your working.

i	
ii	
iii	
iv	
V	
vi	

(b)	From your titration results obtain a suitable volume of FB 2 to be used in your calculations. Show clearly how you obtained this volume.
	[1]
Cal	culations
Sho	w your working and appropriate significant figures in all of your calculations.
(c)	Calculate how many moles of KMnO ₄ were run from the burette during the titration.
	mol of KMnO $_4$ were run from the burette.
	Calculate how many moles of Fe ²⁺ ions reacted with the KMnO ₄ run from the burette.
	$MnO_4^-(aq) + 5Fe^{2+}(aq) + 8H^+(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{3+}(aq) + 4H_2O(I)$
	mol of ${\rm Fe^{2+}}$ reacted with the ${\rm KMnO_4}$ run from the burette. Calculate the concentration, in mol dm ⁻³ , of ${\rm Fe^{2+}}$ in FB 3 .
	Concentration of Fe ²⁺ in FB 3 = mol dm ⁻³ .

i

ii

iii iv

Calculate the concentration, in mol dm^{-3} , of Fe^{2+} in **FB 1**.

	Concentration of Fe ²⁺ in FB 1 = mol dm ⁻³ .
	Calculate, to 4 significant figures , the concentration of $(NH_4)_2SO_4.FeSO_4.6H_2O$ in FB 1 in g dm ⁻³ . [A_r : Fe, 55.8; H, 1.0; N, 14.0; O, 16.0; S, 32.1]
	FB 1 contains g dm $^{-3}$ of (NH $_4$) $_2$ SO $_4$.FeSO $_4$.6H $_2$ O. [5]
(d)	A student learns that the solution of the iron(II) salt has been prepared by dissolving the solid in distilled water that has absorbed air from the laboratory. Suggest a way in which the distilled water can be prepared and stored in the laboratory to ensure that it contains a minimum of dissolved air.
	[1]
(e)	Estimate the error in reading a volume from a burette.
	smallest division on burette scale = cm ³
	estimated error in reading a volume = \pm
(f)	A titre value is obtained by the difference between final and initial burette readings.
	What is the maximum possible error in obtaining a titre reading?
	estimated maximum error in the titre = \pm
(g)	During one titration a student reads the burette twice. Each reading has an error but the titre has no error. Explain how this can happen.
	[1]
	[Total: 16]

In this experiment you will determine the ionic equation for the reaction of acidified potassium manganate(VII) with potassium iodide. Excess potassium iodide is used and the reaction produces iodine. The amount of iodine produced is measured by titration with sodium thiosulfate.

FA 1 is 0.0180 mol dm⁻³ potassium manganate(VII), KMnO₄.

FA 2 is 1.00 mol dm⁻³ sulfuric acid, H₂SO₄.

FA 3 is 0.500 mol dm⁻³ potassium iodide, KI.

FA 4 is 0.100 mol dm⁻³ sodium thiosulfate, Na₂S₂O₃.

starch indicator

(a) Method

- Pipette 25.0 cm³ of **FA 1** into a conical flask.
- Use the measuring cylinder to add 25 cm³ of **FA 2** to the conical flask.
- Use the measuring cylinder to add 20 cm³ of **FA 3** to the conical flask.
- Fill the burette with FA 4.
- Carry out a rough titration. When the colour of the mixture becomes yellow/orange, add a few drops of starch indicator. Then titrate until the mixture goes colourless.
- Record all your burette readings in the space below.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record in a suitable form below all of your burette readings and the volume of FA 4 added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	

[7]

(b) From your accurate titration results, obtain a suitable value for the volume of FA 4 to be used in your calculations.

Show clearly how you have obtained this value.

Volume	of FA	4 required is	3	cm^3 .	[1]

1	(C)	Cal	lcul	lati	ons
l	C) Cai	lCu	ıau	OHS

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

(i)	Calculate the	number	of moles	of	sodium	thiosulfate	in	the	volume	of	FA	4	calculated
	in (b) .												

moles of
$$Na_2S_2O_3 = \dots mol$$

(ii) Use the equation below to calculate the number of moles of iodine that reacted with the sodium thiosulfate in the titration.

$$I_2 + 2Na_2S_2O_3 \rightarrow Na_2S_4O_6 + 2NaI$$

moles of
$$I_2$$
 = mol

(iii) Use information on page 2 to calculate the number of moles of potassium manganate(VII) in **FA 1** used in the titration.

(iv) From your answers to (ii) and (iii), calculate the number of moles of iodine produced by the reaction of **2.00** moles of potassium manganate(VII) with excess potassium iodide.

moles
$$I_2$$
 = mol

(v) Using your answer to (iv), put a tick next to the ionic equation that represents the reaction between FA 1 and FA 3.

$$2MnO_4^- + 2I^- + 16H^+ \rightarrow I_2 + 2Mn^{6+} + 8H_2O \qquad$$

$$2MnO_4^- + 4I^- + 16H^+ \rightarrow 2I_2 + 2Mn^{5+} + 8H_2O \qquad$$

$$2MnO_4^- + 6I^- + 16H^+ \rightarrow 3I_2 + 2Mn^{4+} + 8H_2O \qquad$$

$$2MnO_4^- + 8I^- + 16H^+ \rightarrow 4I_2 + 2Mn^{3+} + 8H_2O \qquad$$

$$2MnO_4^- + 10I^- + 16H^+ \rightarrow 5I_2 + 2Mn^{2+} + 8H_2O \qquad$$

$$2MnO_4^- + 12I^- + 16H^+ \rightarrow 6I_2 + 2Mn^+ + 8H_2O \qquad$$

(vi)	Prove that the iodide ion has been oxidised in the equation that you selected in (v).
	[5]
	The error in calibration of the pipette you used is $\pm 0.06\text{cm}^3$. Calculate the percentage error when measuring FA 1 , using the pipette.
	percentage error = %
	A student suggested that the experiment would be more accurate if a pipette was used to measure solution FA 3 . State and explain whether you agree with the student.
	[2]
	[Total: 15]

FA 1 is an iron salt in which all the iron is present as Fe^{2+} cations. You will work out the percentage of iron in this salt by titrating a solution of this salt with a standard solution aqueous potassium manganate(VII).

For Examiner's Use

FA 1 is an unknown iron(II) salt.

FA 2 is 1.00 mol dm⁻³ sulfuric acid.

FA 3 is 0.0100 mol dm⁻³ potassium manganate(VII).

(a) Method

Weighing out the salt

- Weigh the tube containing FA 1.
- Tip the contents of the tube into a 250 cm³ beaker.
- Re-weigh the empty tube.
- Record all your readings in a suitable form in the space below.

Preparing the solution

- To the salt in the beaker use a measuring cylinder to add approximately 150 cm³ of **FA 2** and stir until the salt has dissolved.
- Pour the contents of the beaker carefully into the 250 cm³ graduated (volumetric) flask using the small funnel.
- Rinse the contents of the beaker twice with a little distilled water and add these washings to the graduated flask.
- Fill the graduated flask to the line with distilled water. Shake carefully to ensure adequate mixing.

Titration

- Fill the burette with **FA 3**.
- Pipette 25.0 cm³ of the solution of **FA 1** from the graduated flask into a conical flask.
- Titrate the solution of FA 1 in the flask with FA 3 until the first appearance of a permanent pink colour.

You should perform a **rough titration**.

In the space below record your burette readings for this rough titration.

The rough titre is	cm ³ .
ino rough and lo	

•	Carry out as many accurate titrations as you think are necessary to obtain consistent
	results.

For Examiner's Use

Make certain any recorded results show the precision of your practical work.

 Record in an appropriate form below all of your burette readings and the volume of FA 3 added in each accurate titration.

I
II
III
IV
V
VI
VII

(b) From your accurate titration results, obtain a suitable value to be used in your calculations. Show clearly how you have obtained this value.

 $25.0\,\mathrm{cm^3}$ of the solution of **FA 1** required cm³ of **FA 3**. [2]

(c) Calculations

For Examiner's Use

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

(i) Calculate how many moles of MnO₄⁻(aq) were present in the volume of FA 3 calculated in (b).

moles of $MnO_4^-(aq) = \dots mol$

(ii) Use the following equation to calculate how many moles of Fe²⁺(aq) were present in the conical flask.

$${\rm MnO_4^{-}(aq)} \ + \ 8{\rm H^+(aq)} \ + \ 5{\rm Fe^{2+}(aq)} \ \longrightarrow \ {\rm Mn^{2+}(aq)} \ + \ 5{\rm Fe^{3+}(aq)} \ + \ 8{\rm H_2O(aq)}$$

moles of Fe²⁺(aq) in the conical flask = mol

(iii) Calculate the number of moles of Fe²⁺ in your weighed sample of **FA 1**.

moles of Fe²⁺ in the weighed sample = mol

I	
II	
III	
IV	
V	

	(iv)	Calculate the percentage of iron in FA 1 . $[A_r$: Fe, 55.8]
		the percentage of iron in FA 1 = $\%$ [5]
(d)		re are a number of sources of potential error in this experiment. One of these involves readings taken using the balance.
	(i)	State the maximum individual error in any single balance reading.
		maximum individual error = g
	(ii)	Calculate the maximum percentage error in the mass of ${\bf FA~1}$ used in your experiment.
		maximum percentage error = % [2]
		[Total: 16]

For Examiner's Use

THERMAL DECOMPOSITION

FA 4 is an **impure** sample of hydrated magnesium sulfate, MgSO₄.7H₂O. When heated the water of crystallisation is driven off to leave anhydrous magnesium sulfate, MgSO₄. The impurity does not give off water when heated. By determining how much water is present in the impure sample, the percentage purity can be calculated.

For Examiner's Use

(a) Method

- Weigh a clean dry crucible.
- Empty all of the FA 4 into the crucible.
- Reweigh the crucible and its contents.
- Support the crucible in the pipe-clay triangle on top of a tripod.
- Heat the crucible gently for about 1 minute and then more strongly for a further 4 minutes.
- Allow the crucible to cool.
- When the crucible is cool enough to handle, reweigh the crucible and its contents.
- Repeat the cycle of heating and weighing as many times as you think necessary.

In the space below, record, in an appropriate form, all your weighings and include the mass of **FA 4** used and the mass of water that was lost.

I	
II	
III	
IV	
V	
	III

[5]

(D)	Show your working and express your answers to three significant figures.		
	(i)	Using the mass of water that was lost on heating, calculate the mass of ${\rm MgSO_4.7H_2O}$ that was present in the initial sample of FA 4 . [$A_{\rm r}$: H, 1.0; O, 16.0; Mg, 24.3; S, 32.1]	
		mass of MaSO 7H O - a [1]	
		mass of $MgSO_4.7H_2O =g$ [1]	
	(ii)	Calculate the percentage by mass of MgSO ₄ .7H ₂ O in FA 4 .	
		novembers by mass of MacCO 711 O in FA 4	
		percentage by mass of MgSO ₄ .7H ₂ O in FA 4 = % [1]	
(c)		gest an improvement to the practical procedure that would give a more accurate the for the percentage by mass of ${\rm MgSO_4.7H_2O}$ in FA 4 .	

For Examiner's Use

[Total: 8]

FA 4 is an impure sample of hydrated calcium chloride, $CaCl_2$ -2H₂O. On heating, hydrated calcium chloride loses its water of crystallisation.

$$CaCl_2.2H_2O(s) \rightarrow CaCl_2(s) + 2H_2O(g)$$

You will determine the purity of **FA 4** by measuring the loss in mass that occurs when it is heated. The impurity present in **FA 4** is not decomposed on heating.

(a) Method

You should read the instructions carefully before starting any practical work and draw a table for your results in the space below.

- Weigh a crucible and record its mass.
- Add between 1.80 g and 2.00 g of **FA 4** into the crucible.
- Reweigh the crucible and its contents and record the mass.
- Place the crucible on the pipe-clay triangle and heat gently for 1 minute and then strongly for a further 2 minutes.
- Allow the crucible and its contents to cool. Reweigh the crucible and contents and record the mass.
- Heat the crucible strongly for a further 2 minutes. Allow it to cool. Reweigh the crucible and contents and record the mass.
- Repeat the heating, cooling and weighing until you are satisfied that all the water of crystallisation has been removed.
- Calculate and record the mass of **FA 4** used and the total mass of water lost.

I	
II	
III	
IV	
V	
VI	

		ow your working and appropriate significant figures in the final answer to each stage of you culations.
	(i)	The percentage loss in mass on heating is defined as
		$\frac{\text{the loss in mass on heating}}{\text{the original mass}} \times 100.$
		Calculate the percentage loss in mass of FA 4 .
		percentage loss in mass =%
	(ii)	Calculate the percentage loss in mass when ${\bf pure}$ hydrated calcium chloride, ${\rm CaC} l_2.2{\rm H_2O}$ is heated.
		percentage loss in mass = %
((iii)	Use your results to (i) and (ii) to calculate the percentage purity of FA 4, impure $CaCl_2.2H_2O$
		percentage purity = % [3
(c)	As	tudent carried out this experiment using 2.60 g of FA 4 .
		ggest whether this experiment would give a more accurate result for the percentage purity FA 4 . Explain your answer.
		Г1

(b) Calculations

(d)	In your calculations you assumed that the impurity in FA 4 does not decompose on heating.
	State how the percentage purity that you calculated in (b)(iii) would change if the impurity were to decompose on heating. Explain your answer.
	[1]
	[Total: 11]

ENTHALPY

You will determine the enthalpy change, ΔH , for the reaction between magnesium and dilute sulfuric acid. The equation for the reaction is given below.

$$Mg(s) + H2SO4(aq) \rightarrow MgSO4(aq) + H2(g)$$

FA 3 is 1.00 mol dm⁻³ sulfuric acid, H₂SO₄. **two different** coiled lengths of magnesium ribbon, Mg.

(a) Method

Read through the method **before** starting any practical work and prepare a table for your results in the space below.

- Weigh the shorter piece of magnesium ribbon and record its mass.
- Support the plastic cup in the 250 cm³ beaker.
- Use the measuring cylinder to transfer 50 cm³ of FA 3 into the plastic cup.
- Place the thermometer in the **FA 3** in the plastic cup and record the initial temperature.
- Add the shorter piece of magnesium ribbon into the plastic cup. Ensure that all of the magnesium is in contact with the acid. (Care: acid spray may occur.)
- Stir the mixture and record the maximum temperature.
- Empty and rinse the plastic cup. Shake out any excess water.
- Repeat the experiment using the longer piece of magnesium ribbon and record all your data.

Results

[4]

(b) Calculations

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

(i) Show by calculation that the sulfuric acid, **FA 3**, was used in excess in both experiments. $(A_r: Mg, 24.3)$

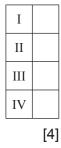
(11)	State an observation which commis that the sulfunc acid, FA 3, was in excess.	
(iii)	Calculate the heat energy produced when the shorter piece of magnesium was added to FA 3 . (Assume that 4.3 J of heat energy changes the temperature of 1.0 cm³ of solution by 1.0 °C.)	
(iv)	heat energy produced =	
(v)	enthalpy change = kJ mol-(sign) (value) Calculate the heat energy produced when the longer piece of magnesium was added to FA 3 . (Assume that 4.3 J of heat energy changes the temperature of 1.0 cm³ of solution by 1.0 °C.)	
(vi)	heat energy produced =	
	enthalpy change = kJ mol ⁻¹ (sign) (value) [5]	
(c) (i)	What is the maximum error in a reading of the thermometer used in this experiment? maximum error =°C.	
(ii)	Which of your temperature changes has the higher percentage error?	
(iii)	Calculate this maximum percentage error. maximum percentage error in the temperature change =	

[1]

art from errors due to heat loss and thermometer readings, suggest another significant irce of error in this experiment. State what improvement could be made to the procedure to uce this error.	(d)
[2]	
[Total: 12]	

In this experiment you will measure the heat given out by the reaction of excess zinc with copper(II) sulfate solution and use this to estimate the concentration of the copper(II) sulfate.

$$Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$$

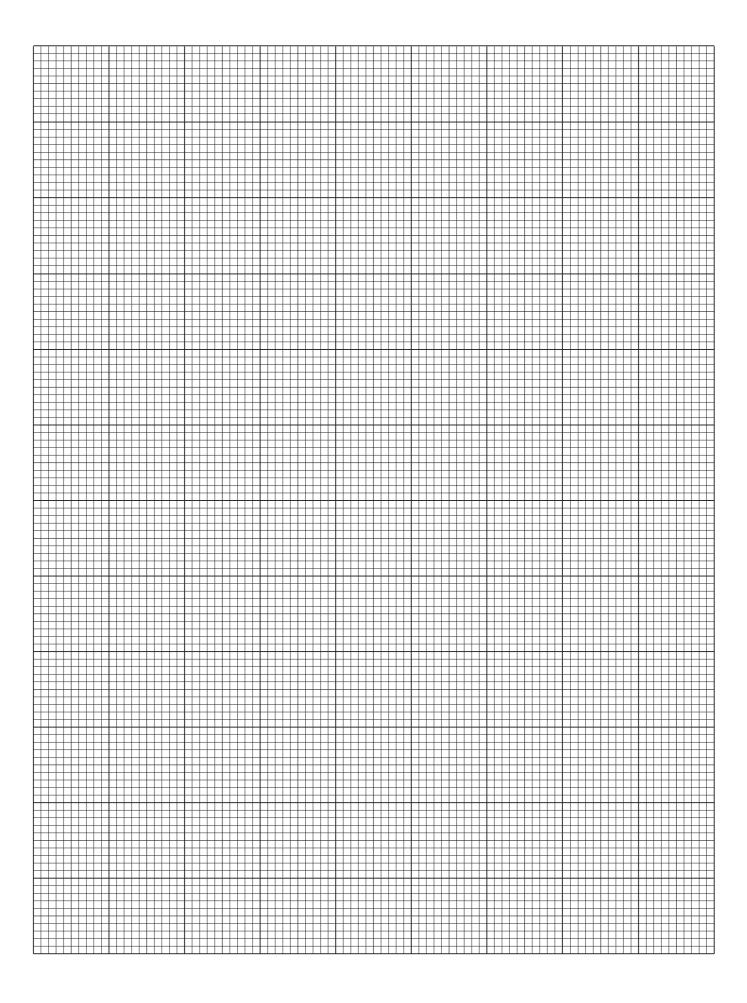

FA 4 is zinc powder.

FA 5 is aqueous copper(II) sulfate, CuSO₄.

(a) Method

Read through the instructions carefully and prepare a table below for your results before starting any practical work.

- Support the plastic cup in the 250 cm³ beaker.
- Use the 50 cm³ measuring cylinder to transfer 40 cm³ of **FA 5** into the plastic cup.
- Measure and record the initial temperature of the solution in the plastic cup.
- Start the stopwatch. Measure and record the temperature of the solution every 30 seconds up to and including the temperature at 2 minutes. Stir the solution frequently.
- At time $t = 2\frac{1}{2}$ minutes, add **all** the powdered zinc to the solution in the plastic cup and stir the mixture.
- Record the temperature every 30 seconds from *t* = 3 minutes up to and including *t* = 9 minutes. Stir the solution constantly.



- **(b) (i)** On the grid opposite, plot the temperature (*y*-axis) against the time (*x*-axis). The scale for the temperature axis must allow you to plot a point with a temperature 5 °C greater than the maximum temperature you recorded.
 - (ii) Draw the following best-fit **straight** lines on the graph.
 - a line through the points between time t = 0 minutes and time t = 2 minutes
 - a line through the points between time t = 5 minutes and time t = 9 minutes
 - a vertical line at time $t = 2\frac{1}{2}$ minutes
 - (iii) Extrapolate the first two straight lines so that they intersect the vertical line at time $t = 2\frac{1}{2}$ minutes.

Use these extrapolated lines to determine the theoretical temperature **change** at time $t = 2\frac{1}{2}$ minutes.

change in temperature =°C

[5]

		ow your working and appropriate significant figures in the final answer to each step of you culations.
((i)	Use your answer to (b)(iii) to calculate the heat energy produced in the reaction. (Assume that 4.2J are required to increase the temperature of 1 cm³ of solution by 1 °C.)
		heat energy produced =
(i	ii)	The molar enthalpy change, ΔH , for the reaction shown below is $-219\mathrm{kJ}\mathrm{mol}^{-1}$.
		$Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$
		Use this value and your answer to (i) to calculate the number of moles of copper(II) sulfate in your reaction.
		moles of CuSO ₄ = mo
(ii	ii)	Use your answer to (ii), to calculate the concentration of copper(II) sulfate, in mol dm $^{-3}$, in FA 5.
		concentration of CuSO ₄ = mol dm ⁻
(d) ((i)	Calculate the maximum percentage error in the highest temperature that you recorded in your results table.
		maximum percentage error = %
(i	ii)	A student suggested that the concentration of the copper(Π) sulfate could be determined more accurately if a greater mass of zinc had been used. Explain whether you agree with this student.
(ii	ii)	A second student suggested that the concentration of the copper(II) sulfate could be determined more accurately if a smaller volume of $copper(II)$ sulfate was used. Explain whether you agree with this student.
		[3

(c) Calculations

[Total: 15]

You are to determine the enthalpy change for the neutralisation reaction given below.

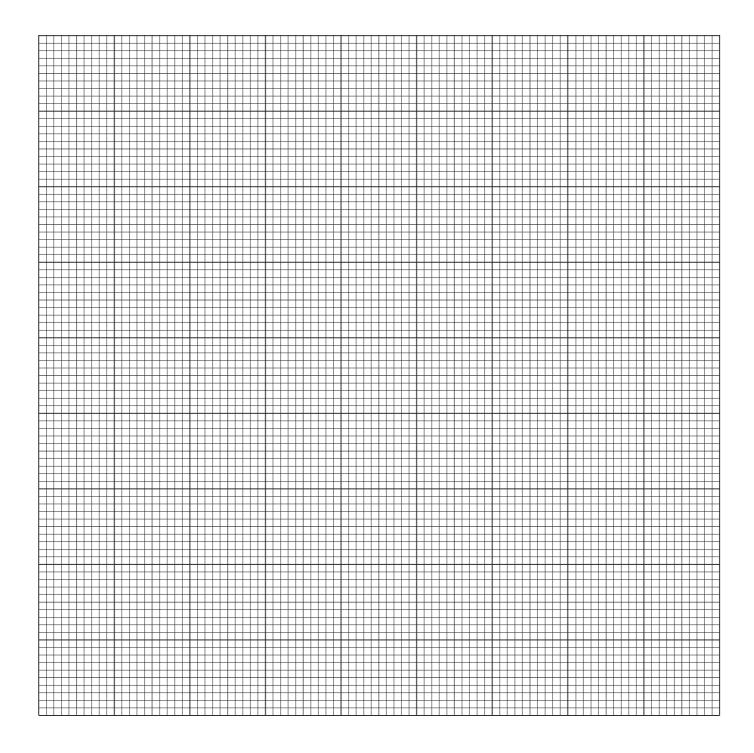
$$HA(aq) + NaOH(aq) \rightarrow NaA(aq) + H2O(I)$$

FA 3 is 1.80 mol dm⁻³ HA.

FA 4 is aqueous sodium hydroxide, NaOH.

(a) Method

Read through the instructions carefully and prepare a table below for your results before starting any practical work.


- Support the plastic cup in the 250 cm³ beaker.
- Rinse and fill the burette with FA 3.
- Use the measuring cylinder to transfer 25 cm³ of **FA 4** into the plastic cup.
- Place the thermometer in the plastic cup and record the temperature of the solution. Tilt the cup if necessary to ensure the thermometer bulb is fully immersed.
- Run 5.00 cm³ of **FA 3** into the cup. Stir, and record the new temperature of the solution and the volume of **FA 3** added.
- Run a second 5.00 cm³ of **FA 3** into the cup. Stir and record the new temperature and the total volume of **FA 3** added.
- Continue adding **FA 3** in 5.00 cm³ portions. Stir and record each new temperature and total volume of **FA 3** until a total of 45.00 cm³ has been added.

Results

I II III IV

[4]

(b) Plot a graph of temperature (*y*-axis) against total volume of **FA 3** added (*x*-axis) on the grid opposite. The temperature axis should allow you to include a point at least 2 °C greater than the maximum temperature recorded.

Draw the best fit smooth curve or straight line through the two sets of points, one for the increase in temperature of the mixture and the other for the cooling of the solution once the reaction is complete. Extrapolate the two lines and determine the maximum **increase** in temperature and the corresponding volume of **FA 3** added for this increase in temperature.

1	
II	
III	
IV	

maximum temperature increase =°C
volume of FA 3 = cm ³ [4]

		ow your working and appropriate significant figures in the final answer to each step of your culations.
	(i)	Calculate the number of moles of HA present in the volume of FA 3 recorded in (b) .
	(ii)	moles of HA = mo Using your answers to (b), calculate the heat energy produced when FA 3 neutralised
	,	25 cm³ of sodium hydroxide. (Assume that 4.2 J of heat energy changes the temperature of 1.0 cm³ of solution by 1.0 °C.)
		heat energy produced =
	(iii)	Calculate the enthalpy change of neutralisation, in kJ mol ⁻¹ , for the reaction below.
		$HA(aq) + NaOH(aq) \rightarrow NaA(aq) + H2O(I)$
(d)		enthalpy change = kJ molecular kJ mo
(e)		maximum percentage error = % [1] en carrying out thermochemistry experiments in an A Level laboratory, the plastic cup is ually placed in a glass beaker. Give a reason for the use of the glass beaker.
(f)		art from using a thermometer calibrated to a greater level of precision, suggest one provement that could be made to the method carried out in (a) .

(c) Calculations

[Total: 15]

You are required to determine the molar enthalpy change of solution for ammonium chloride, **FA 1**.

For Examiner's Use

When an exothermic reaction takes place in a container such as a beaker, some of the evolved heat energy is absorbed by the beaker.

When an endothermic reaction takes place some of the required heat energy is supplied by the beaker.

The amount of heat energy evolved or supplied for a 1 °C change in temperature is known as the heat capacity of the beaker.

In preparation for your experiment to determine the molar enthalpy change of solution for **FA 1** you will first need to determine the approximate heat capacity of a 250 cm³ beaker.

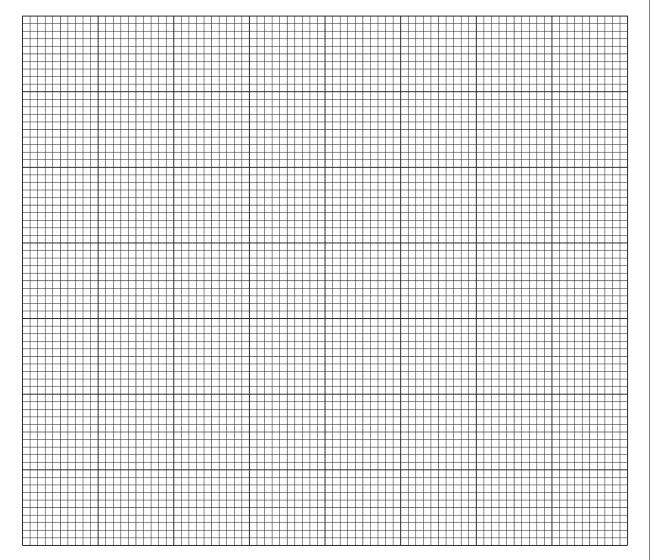
Before starting any practical work read through the instructions in (a) and draw up a table to record your results.

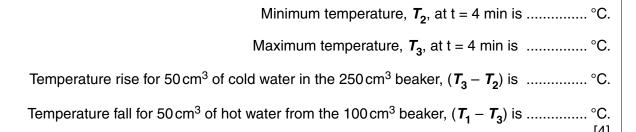
(a) Determining the approximate heat capacity of the 250 cm³ beaker

For Examiner's Use

When samples of hot and cold water are mixed in the 250 cm³ beaker, some heat is lost to the beaker in raising its temperature. To determine the approximate heat capacity of your 250 cm³ beaker, you will determine the maximum temperature rise when a sample of hot water is added to cold water in the beaker.

- Use a 50 cm³ measuring cylinder to transfer 50 cm³ of cold water into the 250 cm³ beaker
- Use the 50 cm³ measuring cylinder to transfer 50 cm³ of cold water into a 100 cm³ beaker. Note the temperature of the water in this 100 cm³ beaker and heat it carefully and gently until the temperature of the water in it has increased by 45–50 °C then stop heating, e.g. if the water is at 20.0 °C you should warm it to 65–70 °C.
- Stir the cold water in the 250 cm³ beaker with the thermometer.
- Record the temperature of the cold water (this is the temperature at t = 0 min).
- Record the temperature each minute for 3 minutes.
- After you have taken the reading at t = 3 min, use the thermometer to stir the hot water in the 100 cm³ beaker.
- At t = 4 min, measure the temperature of the hot water and record this value in the box below.
- **Immediately** add the hot water from the 100 cm³ beaker to the cold water in the 250 cm³ beaker. Stir with the thermometer but do **not** record the temperature.
- Continue to stir the water throughout the experiment.
- Record the temperature at t = 5 min, and then every $\frac{1}{2}$ minute until t = 8 min.
- Empty and rinse the 250 cm³ beaker. Dry it using a paper towel.
- Record all measurements of time and temperature obtained.


The temperature, T_1 , of the hot water at t = 4 min is°C.


Table of results

(b) Graph plotting

For Examiner's Use

- 1. Plot a graph of the temperature of the water in the 250 cm³ beaker (y-axis) against time (x-axis) on the grid below.
 - Do **not** plot the temperature, T_1 , of the hot water at t = 4 min.
- 2. Draw two straight lines of best fit; one through the points up to t = 3 min; the second through the points from t = 5 min to t = 8 min. Extrapolate both lines to t = 4 min.
- 3. From the extrapolated lines read the minimum and the maximum temperatures at t = 4 min. Record these values in the spaces provided below.
- 4. Determine the values for the two temperature changes at t = 4 min.

(c) Calculations

For Examiner's Use

Working should be shown in all calculations.

[4.2J are absorbed or released when the temperature of $1.0\,\mathrm{cm^3}$ of water changes by $1.0\,^\circ\mathrm{C.}$]

(i) Calculate the heat energy gained by the 50 cm³ of cold water in the 250 cm³ beaker.

The heat energy gained by the cold water = J.

(ii) Calculate the heat energy lost by the 50 cm³ of hot water from the 100 cm³ beaker.

The heat energy lost by the hot water = J.

(iii) The difference between the values calculated in (i) and (ii) is an approximate value for the total heat energy absorbed by the 250 cm³ beaker during the experiment. The heat capacity of the beaker is the amount of heat energy absorbed for a 1 °C change in temperature.

approximate heat capacity of the 250 cm³ beaker $\frac{\text{(heat energy lost)} - \text{(heat energy gained)}}{(T_3 - T_2)} \, \text{J} \, ^{\circ}\text{C}^{-1}$

Use your answers to (i) and (ii) and the temperature rise from (b) to calculate the approximate heat capacity of the 250 cm³ beaker.

The approximate heat capacity of the $250 \, \text{cm}^3$ beaker = $J \, ^{\circ} C^{-1}$.

(d) Determining the enthalpy change of solution for ammonium chloride

For Examiner's Use

Follow the instructions below to find the temperature change when a known mass of solid ammonium chloride dissolves in water.

You are provided with two samples of ammonium chloride. You should use the sample labelled NH_4Cl in experiment 1 and the sample labelled FA 1 in experiment 2.

Experiment 1

- Enter all results in the table below.
- Weigh the stoppered tube containing ammonium chloride, which is labelled NH_AC1.
- Use the 50 cm³ measuring cylinder to transfer 100 cm³ of cold water into the rinsed and dried 250 cm³ beaker used in (a).
- Stir the water in the beaker with the thermometer and record the temperature.
- Add the solid from the weighed tube to the water.
- Stir the mixture constantly with the thermometer.
- Record the minimum temperature obtained in the solution.
- Reweigh the tube labelled NH₄C1, its stopper and any residual ammonium chloride.
- Empty and rinse the beaker and dry it using a paper towel.

Experiment 2

- Enter all results in the table below.
- Weigh a clean, dry, boiling-tube.
- Weigh between 9.8 g and 10.2 g of **FA 1**, ammonium chloride, into the boiling-tube.
- Repeat the procedure in **experiment 1** and record the minimum temperature obtained when this mass of **FA 1** dissolves in 100 cm³ of water.
- Reweigh the boiling-tube and any residual ammonium chloride.

Results

	experiment 1	experiment 2
mass of tube + ammonium chloride / g		
mass of empty tube / g		
mass of tube + residual ammonium chloride / g		
mass of ammonium chloride / g		
initial temperature of water / °C		
minimum temperature obtained / °C		
temperature fall, ΔT / °C		

(e) Calculations

For Examiner's Use

Working should be shown in all calculations.

VVO	rking should be shown in all calculations.	USE
(i)	Use the temperature fall from (d) , experiment 1 , to calculate the change in heat energy of the solution. [4.3J are absorbed or released when the temperature of 1.0 cm ³ of solution changes by 1.0 °C.]	
(ii)	The change in heat energy of the solution =	
	Explain why these two changes in heat energy have to be added together.	
(iii)	Use your answer in (i) above and the approximate heat capacity of the 250 cm ³ beaker calculated in (c)(iii) to calculate the combined change in heat energy of the beaker and solution.	
	The combined change in heat energy of the beaker and solution = J.	
(iv)	Calculate how many moles of FA 1 , NH ₄ C l , were used in (d) , experiment 1 . [A_r ; C l , 35.5; H, 1.0; N, 14.0]	i
		iii
	mol of FA 1 were used in experiment 1 .	

(v)	Calculate the enthalpy change when 1 mol of FA 1 dissolves in an excess of water. This is the molar enthalpy change of solution, $\Delta \mathbf{H}_{\text{solution}}$ (NH ₄ Cl). Make certain that your answer is given in kJ mol ⁻¹ and has the appropriate sign.	For Examiner's Use	
	$\Delta \mathbf{H}_{\text{solution}} \text{ (NH}_{4}\text{C} \textit{l)} = \dots \text{kJ mol}^{-1}.$ $sign calculated \ value$		
(vi)	Explain the significance of the sign you have given in (v) and how it is related to your experimental results.	v	
		vi	
		vii	
	[8]	viii	

(f) Evaluation

(g)

For Examiner's Use

A data book value for the molar enthalpy change of solution, $\Delta \mathbf{H}_{\text{solution}}$ (NH₄Cl), is +15.2 kJ mol⁻¹.

The value you have obtained may be significantly different from this value.

Calculate the difference between your value of $\Delta \textit{H}_{\text{solution}}$ (NH₄Cl) and the data book value. Record this difference below. Express this difference as a percentage of the data book value.

αιπerence = KJ moi
percentage difference =
Sources of error
Describe one major source of error in this experiment. Suggest an improvemer which would significantly increase the accuracy of the experiment. Explain why you suggestion would produce a more accurate value.
description of major source of error
suggested improvement
explanation of why suggestion would increase experimental accuracy
[2
ا

[Total: 25]

RATE OF REACTION

In this experiment you will investigate how the rate of reaction between sodium thiosulfate and hydrochloric acid is affected by the concentration of the acid.

When aqueous thiosulfate ions react with hydrogen ions, H⁺, in any acid, a pale yellow precipitate of sulfur is formed. The ionic equation for this reaction is given below.

$$S_2O_3^{2-}(aq) + 2H^+(aq) \rightarrow S(s) + SO_2(aq) + H_2O(l)$$

The rate of the reaction can be determined by measuring the time taken to produce a fixed quantity of sulfur.

FA 4 is $0.10\,\mathrm{mol\,dm^{-3}}$ sodium thiosulfate, $\mathrm{Na_2S_2O_3}$.

FA 5 is 0.20 mol dm⁻³ hydrochloric acid, HC*l*.

(a) Method

Record **all** your measurements, in an appropriate form, in the space below.

Experiment 1

- Use the larger measuring cylinder to transfer 40 cm³ of FA 4 into the 100 cm³ beaker.
- Rinse the larger measuring cylinder thoroughly with water, then add 30 cm³ of **FA 5** to the beaker and start timing **immediately**.
- Stir the mixture once and place the beaker on top of the printed insert page provided.
- Look down through the solution in the beaker at the print on the insert.
- Stop timing as soon as the precipitate of sulfur makes the print on the insert invisible.
- Record the reaction time to the nearest second.
- Empty and rinse the 100 cm³ beaker.
- Dry the outside of the beaker ready for Experiment 2.

Experiment 2

- Rinse the larger measuring cylinder, then use it to transfer 40 cm³ of **FA 4** into the 100 cm³ beaker.
- Use the smaller measuring cylinder to add 10 cm³ of distilled water to the beaker.
- Use the same measuring cylinder to add 20 cm³ of **FA 5** to the mixture in the beaker and start timing **immediately**.
- Stir the mixture once and place the beaker on top of the printed insert page provided.
- Stop timing as soon as the print on the insert becomes invisible.
- Record the reaction time to the nearest second.
- Empty and rinse the 100 cm³ beaker.
- Dry the outside of the beaker ready for Experiment 3.

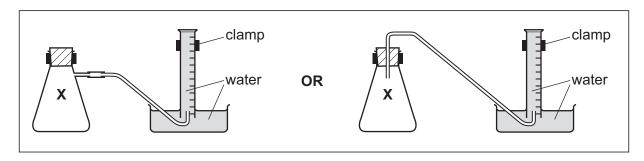
Experiment 3

- Carry out the reaction using a mixture of 40 cm³ of **FA 4**, 20 cm³ of distilled water and 10 cm³ of **FA 5**.
- Measure and record the reaction time to the nearest second.

I	
II	
III	
IV	

	'rate of reaction' = $\frac{1000}{\text{reaction time}}$
	Use this formula to calculate the 'rate of reaction' for Experiments 1 and 3. Give the unit.
	'rate of reaction' for Experiment 1 unit unit
	'rate of reaction' for Experiment 3 unit unit
(ii)	Calculate the initial concentrations of hydrochloric acid in the reaction mixtures in Experiments 1 and 3.
	initial concentration of HC l in Experiment 1 = mol dm ⁻³
	initial concentration of HC1 in Experiment 3 = mol dm ⁻³
(iii)	How is the 'rate of reaction' affected by the concentration of hydrochloric acid in the mixture?
(iv)	Predict how the reaction time measured in Experiment 1 would have been affected if the experiment had been carried out using 0.20 mol dm ⁻³ sulfuric acid instead of 0.20 mol dm ⁻³ hydrochloric acid. Explain your answer.
(v)	Predict how the reaction time measured in Experiment 3 would have been affected if the experiment had been carried out in a 250 cm³ beaker instead of a 100 cm³ beaker. Explain your answer.
	[5]

(b) (i) The 'rate of reaction' can be represented by the formula below.


Metal carbonates react with dilute acids to produce carbon dioxide. You will identify the metal, \mathbf{M} , in a metal carbonate, $\mathbf{M}_2 CO_3$, by measuring the volume of carbon dioxide produced during the reaction of $\mathbf{M}_2 CO_3$ with excess hydrochloric acid.

$$M_2CO_3(s) + 2HCl(aq) \rightarrow 2MCl(aq) + CO_2(g) + H_2O(l)$$

FA 2 is hydrochloric acid, HCl, as used in **Question 1**. **FA 4** is M_2CO_3 .

(a) Method

Read **all** instructions before starting your practical work. The diagrams below may help you in setting up your apparatus.

- Fill the tub with water to a depth of about 5 cm.
- Fill the 250 cm³ measuring cylinder **completely** with water. Hold a piece of paper towel firmly over the top, invert the measuring cylinder and place it in the water in the tub.
- Remove the paper towel and clamp the inverted measuring cylinder so the open end is in the water just above the base of the tub.
- Use the 50 cm³ measuring cylinder to place 50 cm³ of FA 2 into the reaction flask, labelled X.
- Check that the bung fits tightly in the neck of flask **X**, clamp flask **X**, and place the end of the delivery tube into the inverted 250 cm³ measuring cylinder.
- Weigh the container with FA 4 and record the mass in the space below.
- Remove the bung from the neck of the flask. Tip all the FA 4 into the acid in the flask and replace the bung immediately. Remove the flask from the clamp and swirl it to mix the contents.
- Swirl the flask occasionally until no more gas is evolved. Replace the flask in the clamp.
- Reweigh the container and record the mass, and the mass of FA 4 used, in the space below.
- When no more gas is collected, measure and record the final volume of gas in the measuring cylinder in the space below.

(b)	Cal	culations								
	Show your working and appropriate significant figures in the final answer to eacalculations.									
	(i)	Use the volume of gas you collected to calculate the number of moles of gas produced. [Assume that 1 mole of gas occupies 24.0 dm³ under these conditions.]								
		moles of gas = mol								
	(ii)	Use your answer to (i) to deduce the number of moles of $\mathbf{M}_2\mathrm{CO}_3$ used in the reaction.								
		moles of $\mathbf{M}_2 CO_3 = \dots$ mol								
((iii)	Use your answer to (ii) and the mass of FA 4 used to calculate the relative formula mass, $M_{\rm r}$, of ${\rm M_2CO_3}$.								

(iv) Use your answer to (iii) and the Periodic Table on page 12 to identify metal M. Explain

your answer.

M is

 $M_{\rm r}$ of $\mathbf{M}_2 \text{CO}_3 = \dots$

[4]

	Calculate the maximum percentage error in your reading of the volume of gas.
	maximum percentage error = %
(ii)	It is likely that the volume of carbon dioxide that you collected was less than the theoretical volume.
	Give two reasons why this volume is likely to be less than the theoretical volume.
	In each case, suggest and explain a modification to the practical procedure that could help to reduce the difference in volume.
	reason
	modification
	reason
	modification
	[5]

(c) (i) A 250 cm 3 measuring cylinder can be read to $\pm 1\,\text{cm}^3.$

[Total: 11]

You will investigate the rate of reaction between iron(III) ions, Fe³⁺, and iodide ions, I⁻.

$$2Fe^{3+}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{2+}(aq) + I_{2}(aq)$$

The iodine, I_2 , produced can be reacted immediately with thiosulfate ions, $S_2O_3^{2-}$.

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$$

When all the thiosulfate has been used, the iodine produced will turn starch indicator blue-black. The rate of the reaction can therefore be measured by finding the time for the blue-black colour to appear.

FB 1 is aqueous iron(III) chloride, FeC l_3 . **FB 2** is aqueous potassium iodide, KI. **FB 3** is $0.0060\,\mathrm{mol\,dm^{-3}}$ sodium thiosulfate, Na₂S₂O₃. starch indicator

You are advised to read the instructions before starting any practical work.

(a) Method

Experiment 1

- Fill a burette with **FB 1**.
- Run 20.00 cm³ of **FB 1** into a 100 cm³ beaker.
- Use the measuring cylinder to place the following in a second 100 cm³ beaker.
 - o 10 cm³ of **FB 2**
 - o 20 cm³ of **FB 3**
 - 10 cm³ of starch indicator
- Add the contents of the second beaker to the first beaker and start timing.
- Stir the mixture once and place the beaker on the white tile.
- The mixture turns brown and then yellow before turning a blue-black colour. Stop timing when this blue-black colour appears.
- Record in your table the volume of **FB 1** used, the volume of distilled water used and the time to the **nearest second** for the blue-black colour to appear.
- Wash both beakers.

For each of **Experiments 2-6** you should complete your results table to show the volume of **FB 1** used, the volume of distilled water used and the time taken to the **nearest second** for the blue-black colour to appear.

Experiment 2

- Fill the other burette with distilled water.
- Run 10.00 cm³ of **FB 1** into a 100 cm³ beaker.
- Run 10.00 cm³ of distilled water into the same beaker.
- Use the measuring cylinder to place the following in a second 100 cm³ beaker.
 - o 10 cm³ of **FB 2**
 - 20 cm³ of FB 3
 - o 10 cm³ of starch indicator
- Add the contents of the second beaker to the first beaker and start timing.
- Stir the mixture once and place the beaker on the white tile.
- Stop timing when a blue-black colour appears.
- Wash both beakers.

Experiments 3-6

Carry out **four** further experiments to investigate the effect of changing the concentration of Fe^{3+} (aq) by altering the volume of aqueous $FeCl_3$, **FB 1**, used.

You should not use a volume of **FB 1** that is less than 6.00 cm³ and the total volume of the reaction mixture must always be 60 cm³.

I	
II	
III	
IV	
V	
VI	
VII	
VIII	

(b) Calculations

The rate of reaction can be found by calculating the change in concentration of Fe³⁺(aq) that occurred when enough iodine was produced to change the colour of the indicator to blue-black.

Use your data and the equations on page 2 to carry out the following calculations.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

(i) Calculate the number of moles of thiosulfate ions, $S_2O_3^{2-}$ used in each experiment in (a).

moles $S_2O_3^{2-}$ = mol

(ii) Calculate the number of moles of iodine, I_2 , that react with the number of moles of $S_2O_3^{2-}$ in (i).

moles I_2 = mol

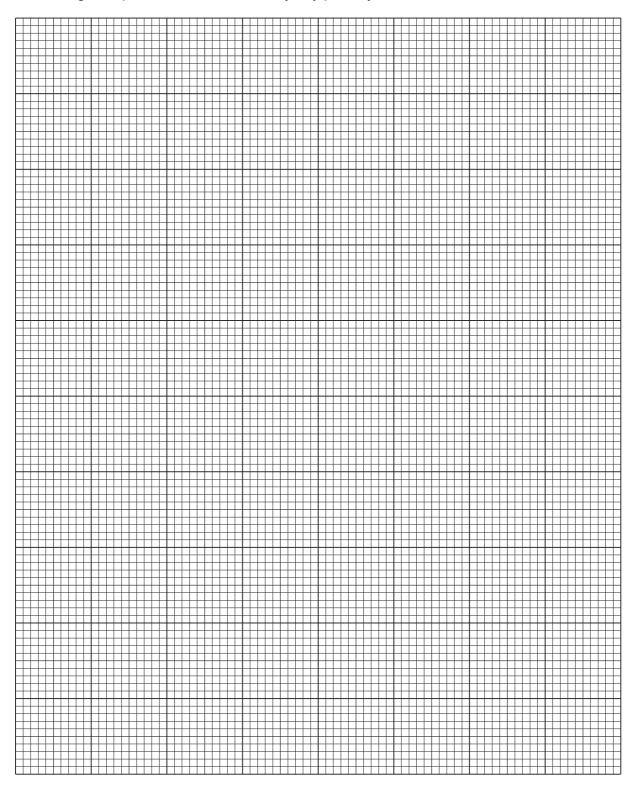
(iii) Calculate the number of moles of iron(III) ions, Fe³⁺, that were used to produce the number of moles of iodine in (ii).

moles $Fe^{3+} = \dots mol$

(iv) When the moles of Fe³⁺ that you calculated in (iii) reacted, a change in the concentration of moles of Fe³⁺ occurred. Calculate this change in concentration.

change in concentration of Fe³⁺(aq) = mol dm⁻³

(v) The following formula can be used as a measure of the 'rate of reaction'.


'rate of reaction' =
$$\frac{\text{change in concentration of Fe}^{3+}(\text{aq})}{\text{reaction time}} \times 10^6$$

Complete the table to show the volume of **FB 1**, the reaction time and the rate in **Experiments 1-6**. You should include units.

If you were unable to calculate a value for the change in concentration of Fe³⁺(aq) in (iv), you should assume it is 2.50×10^{-3} mol dm⁻³. (Note: this is not the correct value.)

Experiment		
1		
2		
3		
4		
5		
6		

(c) On the grid, plot the rate (*y*-axis) against the volume of **FB 1** (*x*-axis). Draw a line of best fit through the points. You should identify any points you consider anomalous.

(d)	Using your graph, what conclusion can you reach about the effect of changing the concentration of $FeCl_3$ on the rate of the reaction between $Fe^{3+}(aq)$ and $I^-(aq)$?
(e)	A student wanted to investigate how changing the concentration of ${\rm I}^{\scriptscriptstyle -}$ would affect the rareaction. Explain how this investigation could be carried out.
(f)	It was found, by carrying out experiments similar to those used in (a), that increasing concentration of I^- increased the rate of the reaction.
	The student suggested modifications to the method as used in (a). In each case, state who effect would be on the reaction time in Experiment 1 and explain how these changes was affect the possible errors in the measurements.
	Suggested modification 1 The reaction was carried out using the same volumes of all reagents but with the concentra of FB 1 and FB 2 being double their original values.
	Suggested modification 2
	The reaction was carried out using half the volume of all reagents.

Which of the experiments you carried out in (a) had the greatest percentage error in the reaction time?	g) (i)
Calculate this percentage error. Assume that the error in measuring the reaction time $\pm 0.5\text{s}.$	(ii)
percentage error =	
[Total: 2	

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

ion	reaction with							
ion	NaOH(aq)	NH₃(aq)						
aluminium, Al ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess						
ammonium, NH₄⁺(aq)	no ppt. ammonia produced on heating	_						
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.						
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.						
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess						
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution						
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess						
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess						
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess						
manganese(II), Mn ²⁺ (aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess						
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess						

2 Reactions of anions

ion	reaction with
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, Cl ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq))
bromide, Br ⁻ (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq))
iodide, I ⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq))
nitrate, NO ₃ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
nitrite, NO ₂ ⁻ (aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil; NO liberated by dilute acids (colourless $NO \rightarrow (pale)$ brown NO_2 in air)
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²⁻ (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result					
ammonia, NH ₃	turns damp red litmus paper blue					
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)					
chlorine, Cl ₂	bleaches damp litmus paper					
hydrogen, H ₂	"pops" with a lighted splint					
oxygen, O ₂	relights a glowing splint					
sulfur dioxide, SO ₂	turns acidified aqueous potassium manganate(VII) from purple to colourless					

The Periodic Table of Elements

	18	2 I	ַ ב ב	4.0	10	Ne	neon 20.2	18	Ā	argon 39.9	36	궃	krypton 83.8	54	Xe	xenon 131.3	98	R	radon			
	17				6	ш	fluorine 19.0	17	Cl	chlorine 35.5	35	й	bromine 79.9	53	Н	iodine 126.9	82	At	astatine -			
	16	_			80	0	oxygen 16.0	16	S	sulfur 32.1	34	Se	selenium 79.0	52	<u>e</u>	tellurium 127.6	84	Ъ	polonium -	116		ivermorium —
	15				7	z	nitrogen 14.0	15	۵	shosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	ē	bismuth 209.0			
	4				9	ပ	carbon 12.0	14	S	silicon 28.1	32	Ge	germanium 72.6	20	Sn	tin 118.7	82	Pb	lead 207.2	114	Εl	flerovium -
	13				2	В	boron 10.8	13	Αl	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	18	11	thallium 204.4			
		_								12	30	Zu	zinc 65.4	48	g	cadmium 112.4	80	Нg	mercury 200.6	112	5	opernicium -
										7	59	Cn	copper 63.5	47	Ag	silver 107.9	79	Au	gold 197.0	111	Rg	oentgenium –
d														+					platinum 195.1			_
Group										6									iridium 192.2			_
		- ⊐	hydrogen	1.0						80	26	Fe	iron 55.8	44	Ru	ruthenium 101.1	92	SO	osmium 190.2	108	Hs	hassium
										7	25	Mn	manganese 54.9	43	ည	technetium -	75	Re	rhenium 186.2	107	Bh	bohrium –
						Ю	ø			9			chromium 52.0			Ε			tungsten 183.8			seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass			2	23	>	vanadium 50.9	41	q	niobium 92.9	73	<u>a</u>	tantalum 180.9	105	<u>а</u>	dubnium -
					at	aton	relati			4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	Ξ	hafnium 178.5	104	꿏	rutherfordium -
								T		က	21	Sc	scandium 45.0	39	>	yttrium 88.9	57-71	lanthanoids		89–103	actinoids	
	2				4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	Š	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium
	_				က	:=	lithium 6.9	1	Na	sodium 23.0	19	¥	potassium 39.1	37	Rb	rubidium 85.5	55	S	caesium 132.9	87	ъ́	francium -

71]	lutetium 175.0	103	۲	lawrencium	ı	
20	Υp	ytterbium 173.1	102	9 N	nobelium	ı	
69	H	thulium 168.9	101	Md	mendelevium	ı	
89	ш	erbium 167.3	100	Fm	fermium	ı	
29	유	holmium 164.9	66	Es	einsteinium	ı	
99	۵	dysprosium 162.5	98	Ç	californium	ı	
65	Тр	terbium 158.9	26	Ř	berkelium	ı	
2	P G	gadolinium 157.3	96	Cm	curium	ı	
63	En	europium 152.0	92	Am	americium	ı	
62	Sm	samarium 150.4	94	Pu	plutonium	ı	
61	Pm	promethium -	93	ď	neptunium	ı	
09	PZ	neodymium 144.4	92	\supset	uranium	238.0	
69	Ā	praseodymium 140.9	91	Ра	protactinium	231.0	
28	Se	oerium 140.1	06	T	thorium	232.0	
22	Гa	nthanum 138.9	89	Ac	ctinium	ı	

lanthanoids

actinoids