## **EXPERIMENT NO. 4**

1 You will determine the concentration of a solution of hydrochloric acid by diluting it and then titrating the diluted solution against an alkali.

$$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H2O(I)$$

**FA 1** was made by dissolving 1.06 g of sodium hydroxide, NaOH, in distilled water to make 250 cm<sup>3</sup> of solution.

**FA 2** is hydrochloric acid, HC*l*. bromophenol blue indicator

## (a) Method

- Pipette 25.0 cm³ of **FA 2** into the 250 cm³ volumetric flask.
- Add distilled water to make 250 cm<sup>3</sup> of solution and shake the flask thoroughly. Label this solution FA 3.
- Fill the burette with **FA 3**.
- Use the second pipette to transfer 25.0 cm<sup>3</sup> of **FA 1** into a conical flask.
- Add about 10 drops of bromophenol blue.
- Perform a rough titration and record your burette readings in the space below. The end point is reached when the solution becomes a permanent yellow colour.

| final burette reading/cm3   | 28.30 |
|-----------------------------|-------|
| initial burette reading/cm3 | 2.50  |
| titre /cm³                  | 25.80 |

The rough titre is ... ... ... ... cm³.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of FA 3 added in each accurate titration.

| final   | burette         | reading/cm3 | 38.70    | 34.90 | 43.00 |  |
|---------|-----------------|-------------|----------|-------|-------|--|
| initial | burette         | reading/cm3 | 13.50    | 9.70  | 18-05 |  |
| titre / | cm <sup>3</sup> |             | 24.90    | 25.20 | 24.95 |  |
| best -  | titve           |             | <b>/</b> |       | /     |  |

[7]

**(b)** From your accurate titration results, obtain a suitable value for the volume of **FA 3** to be used in your calculations. Show clearly how you obtained this value.

24.90+24.95 2

25.0 cm<sup>3</sup> of **FA 1** required .04.925... cm<sup>3</sup> of **FA 3**. [1]

## (c) Calculations

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

(i) Calculate the concentration, in mol dm<sup>-3</sup>, of sodium hydroxide in **FA 1**. Ar of Na: 23, O: 16, H: 1.

$$\Gamma = \frac{m}{M_V}$$

$$= \frac{1.06}{40} \frac{0.0265 \text{mg}}{250 \text{cm}^3}$$

$$C = \frac{n}{V} = \frac{0.0865}{250 \log 0}$$

$$0.106 \, \text{moldm}^{-3}$$

concentration of NaOH in FA 1 = 0.106 mol dm<sup>-3</sup>

(ii) Calculate the number of moles of sodium hydroxide present in 25.0 cm<sup>3</sup> of FA 1.

moles of NaOH =  $0.65 \times 10^{-3}$  mol

(iii) Deduce the number of moles of hydrochloric acid present in the volume of **FA 3** you have calculated in (b).

moles of HC $l = \frac{\partial \cdot 6 \int x / O^{-3}}{100}$  moles of HC $l = \frac{1}{100}$ 

(iv) Calculate the concentration, in mol dm<sup>-3</sup>, of hydrochloric acid in FA 2.

 $C = \frac{\Omega}{V} = \frac{\partial \cdot 65 \times 10^{-3}}{\partial 4.9 \times 1/600}$   $FA3: 0.106 m R d m^{-3}$ 

CMC. I FAB

$$C_1 V_1 = C_2 V_2$$

$$C_1 \times \frac{dS \cdot 0}{dSD} = 0.106 \times \frac{dSO}{dSD}$$

$$FAB = 1.06 \text{ moldm}^{-3}$$

concentration of HCl in **FA 2** =  $\frac{1.06}{1.06}$  mol dm<sup>-3</sup> [5]

[Total: 13]