EXPERIMENT NO. 6

In this experiment you will determine the value of x in the formula for hydrated copper(II) sulfate, CuSO₄.xH₂O. You will first react a solution of Cu²⁺ ions with excess iodide ions, I⁻. This reaction produces iodine.

$$2Cu^{2+}(aq) + 4I^{-}(aq) \rightarrow 2CuI(s) + I_2(aq)$$

The amount of iodine produced can be determined by titrating with thiosulfate ions, S₂O₃²⁻.

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$$

FA 1 is $0.150 \, \text{mol dm}^{-3}$ sodium thiosulfate, $\text{Na}_2\text{S}_2\text{O}_3$.

FA 2 is dilute sulfuric acid.

FA 3 is 1.00 mol dm⁻³ potassium iodide, KI.

FA 4 is a solution made by dissolving 32.5 g of CuSO₄.**x**H₂O in 1.00 dm³ of solution. starch indicator

(a) Method

- Fill the burette with **FA 1**.
- Pipette 25.0 cm³ of FA 4 into a conical flask.
- Use the measuring cylinder to add 10 cm³ of FA 2 to the same conical flask.
- Use the measuring cylinder to add 10 cm³ of FA 3 to the same conical flask. The mixture will become brown because of the formation of I₂, and will become cloudy because of the formation of the white precipitate of CuI.
- Add FA 1 from the burette until the mixture becomes a light brown colour.
- Add 10 to 20 drops of starch indicator until the mixture becomes blue-black.
- Continue to titrate with **FA 1** until the blue-black colour disappears leaving a mixture with an off-white solid. This is the end-point.
- You should test that the end-point has been reached by adding 2 more drops of starch indicator. If the titration has reached the end-point the added starch indicator will cause no change in colour.
- Perform a rough titration and record your burette readings in the space below.

The rough title is	The rough	titre	is		cm ³
--------------------	-----------	-------	----	--	-----------------

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record in a suitable form below all of your burette readings and the volume of FA 1 added in each accurate titration.

(5)	in y	our calculations. Sow clearly how you obtained this value.
		25.0 cm ³ of FA 4 required cm ³ of FA 1 . [1]
(c)	Cal	culations
		ow your working and appropriate significant figures in the final answer to each step of your culations.
	(i)	Calculate the number of moles of thiosulfate ions in the volume of FA 1 calculated in (b).
		moles of $S_2O_3^{2-}$ = mo
	(ii)	Using the equations on page 1, calculate the number of moles of copper(II) ions in 25.0 cm of FA 4 .
		moles of Cu ²⁺ = mo
	(iii)	Calculate the concentration, in moldm ⁻³ , of copper(II) ions in FA 4 .
		concentration of Cu ²⁺ in FA 4 = moldm ⁻³
	(iv)	Calculate the value of ${\bf x}$ in ${\rm CuSO_4.xH_2O.}$

	maximum percentage error =	%
(ii)	A student suggests that the experiment could be made more accurate if the FA 3 was measured using a burette.	volume of
	Give a reason why the student might make this suggestion.	
	Explain why this change would not improve the accuracy of the experiment.	
		[3]

(d) (i) Calculate the maximum percentage error in one of your accurate titres.