EXPERIMENT NO. 1

FA 4 is an impure sample of hydrated calcium chloride, CaC l_2 .2H₂O. On heating, hydrated calcium chloride loses its water of crystallisation.

$$CaCl_2.2H_2O(s) \rightarrow CaCl_2(s) + 2H_2O(g)$$

You will determine the purity of **FA 4** by measuring the loss in mass that occurs when it is heated. The impurity present in **FA 4** is not decomposed on heating.

(a) Method

You should read the instructions carefully before starting any practical work and draw a table for your results in the space below.

- Weigh a crucible and record its mass.
- Add between 1.80 g and 2.00 g of FA 4 into the crucible.
- Reweigh the crucible and its contents and record the mass.
- Place the crucible on the pipe-clay triangle and heat gently for 1 minute and then strongly for a further 2 minutes.
- Allow the crucible and its contents to cool. Reweigh the crucible and contents and record the mass.
- Heat the crucible strongly for a further 2 minutes. Allow it to cool. Reweigh the crucible and contents and record the mass.
- Repeat the heating, cooling and weighing until you are satisfied that all the water of crystallisation has been removed.
- Calculate and record the mass of FA 4 used and the total mass of water lost.

mass of empty crucible/g	26.45
mass of crucible + FA4/g	28.35
mass of FA4 before heating /g	1.90
mass of crucible + FA4 after heating /g	28.15
mass of crucible + FA4 after 1st reheating/g	28.08
mass of crucible + FA4 after and reheating/g	28.07
mass of FA4 after heating /g	1.62
mass of water lost/g	0.28

I	
II	
III	
IV	
V	
VI	

(b) Calculations

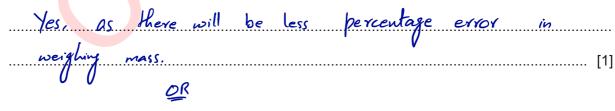
Show your working and appropriate significant figures in the final answer to **each** stage of your calculations.

(i) The percentage loss in mass on heating is defined as

$$\frac{\text{the loss in mass on heating}}{\text{the original mass}} \times 100.$$

Calculate the percentage loss in mass of FA 4.

percentage loss in mass = 14.74 %


(ii) Calculate the percentage loss in mass when **pure** hydrated calcium chloride, CaCl₂.2H₂O, is heated.

(iii) Use your results to (i) and (ii) to calculate the percentage purity of FA4, impure $CaCl_2.2H_2O.$

$$\frac{14.74}{24.47} \times 100$$
percentage purity = 60.2 %
[3]

(c) A student carried out this experiment using 2.60 g of FA 4.

Suggest whether this experiment would give a more accurate result for the percentage purity of **FA 4**. Explain your answer.

NO, because there is more water to be lost so more spitting and frothing so percentage error in mass lost will be greater.

to decompose Explain you	ose on hea ur answer.	ating.					d change if the	
There	would	be the g	reater	loss	J	mass	there fore	percent
purity	would	increa	se.					[
' 0								[Total: 1

(d) In your calculations you assumed that the impurity in FA 4 does not decompose on heating.