TITRATION NO. 2

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

Acids are defined as substances that can donate hydrogen ions, H⁺, to bases. Monoprotic acids contain one H⁺ that can be donated per molecule. Diprotic acids contain two H⁺ that can be donated per molecule.

You will determine by a titration method whether acid **Z** is monoprotic or diprotic.

FA 1 is a solution containing 6.10 g dm⁻³ of acid **Z**. **FA 2** is 0.105 mol dm⁻³ aqueous sodium hydroxide, NaOH. methyl orange indicator

(a) Method

- Pipette 25.0 cm³ of **FA 1** into a conical flask.
- Fill a burette with **FA 2**.
- Add several drops of methyl orange indicator to the conical flask.
- Carry out a rough titration and record your burette readings in the space below.

final	burette	reading/cm³	26.90
initial	buvette	reading/cm³	0.40
titre/cm3		26.50	

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the accuracy of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of FA 2 added in each accurate titration.

final burette reading/cm³	31.70	41.70	32.50
initial buvette reading/cm³	5.40	15.60	6.30
titre/cm3	26 ·30	<i>26.10</i>	26.20
best titre		/	/

I	
II	
III	
IV	
V	
VI	
VII	

(b)	From your accurate titration results, obtain a suitable value for the volume of FA 2 to be used
	in your calculations. Show clearly how you obtained this value.

$$\frac{26 \cdot 10 + 26 \cdot 20}{25.0 \,\text{cm}^3 \,\text{of FA 1 required}}$$
 cm³ of FA 2. [1]

(c) Calculations

(i) Calculate the number of moles of sodium hydroxide present in the volume of **FA 2** calculated in **(b)**.

$$n = CV$$

$$= 0.105 \times \frac{26.10}{1000}$$
moles of NaOH = 0.74×10^{-3} mol

Then deduce the number of moles of H⁺ present in 25.0 cm³ of **FA 1**.

$$H^{+}: OH^{-}$$
1:1

3.74×10⁻³

moles of H⁺ in 25.0 cm³ of **FA 1** = ... 3.74×10⁻³ mol

(ii) Calculate the number of moles of H⁺ present in 1 dm³ of **FA 1**.

$$\frac{d5.0}{1000} \, dm^3 - 2.74 \times 10^{-3} \, dm^3 - \chi$$

$$1 \, dm^3 - \chi$$

$$moles of H^+ in 1 dm^3 of FA 1 = 0.110 \quad mol [1]$$

(iii) FA 1 contains 6.10 g dm⁻³ of acid **Z**. The relative molecular mass of **Z** is 126.

Calculate the number of moles of **Z** in 1 dm³ of **FA 1**.

$$N = \frac{m}{M_V} = \frac{6.10}{126} = 0.484 \, \text{mol}$$

moles of **Z** in 1 dm³ of **FA 1** =
$$0.484$$
 mol [1]

(iv) Use your answers to (ii) and (iii) to determine whether **Z** is a monoprotic or a diprotic acid. Explain your answer.

Explain your answer.

moles of Z: moles of H*

$$0.110$$
 0.0484 : 0.110
 $1: X$

So the acid Z is diprotic.

[1]