EXPERIMENT NO. 2

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

Acids are defined as substances that can donate hydrogen ions, H⁺, to bases. Monoprotic acids contain one H⁺ that can be donated per molecule. Diprotic acids contain two H⁺ that can be donated per molecule.

You will determine by a titration method whether acid **Z** is monoprotic or diprotic.

FA 1 is a solution containing 6.10 g dm⁻³ of acid **Z**. **FA 2** is 0.105 mol dm⁻³ aqueous sodium hydroxide, NaOH. methyl orange indicator

(a) Method

- Pipette 25.0 cm³ of **FA 1** into a conical flask.
- Fill a burette with FA 2.
- Add several drops of methyl orange indicator to the conical flask.
- Carry out a rough titration and record your burette readings in the space below.

The	rough	titre	is	 cm ³
1110	IOUGII	uuc	13	 OIII .

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the accuracy of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of FA 2 added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	

(b)		m your accurate titration results, obtain a suitable value for the volume of FA 2 to be used our calculations. Show clearly how you obtained this value.
		25.0 cm³ of FA 1 required cm³ of FA 2 . [1]
(c)	Cal	culations
	(i)	Calculate the number of moles of sodium hydroxide present in the volume of FA 2 calculated in (b) .
		moles of NaOH = mol
		Then deduce the number of moles of H ⁺ present in 25.0 cm ³ of FA 1 .
		moles of H ⁺ in 25.0 cm ³ of FA 1 = mol [1]
	(ii)	Calculate the number of moles of H ⁺ present in 1 dm ³ of FA 1 .
		moles of H ⁺ in 1 dm ³ of FA 1 = mol [1]
	(iii)	FA 1 contains 6.10 g dm ⁻³ of acid Z . The relative molecular mass of Z is 126.
		Calculate the number of moles of Z in 1 dm³ of FA 1 .
		moles of Z in $1 dm^3$ of FA 1 = mol [1]
	(iv)	Use your answers to (ii) and (iii) to determine whether Z is a monoprotic or a diprotic acid. Explain your answer.
		[1]

[Total: 12]