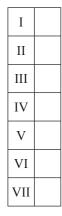
TITRATION NO. 3

The concentration of aqueous ammonia used in qualitative analysis is 2 mol dm⁻³ but it is supplied in a much more concentrated form. This is referred to as '.880 ammonia'. You are to determine the concentration of '.880 ammonia' by titration of a solution of ammonia, **FB 1**, with hydrochloric acid of known concentration. The equation for the reaction is given below.

$$NH_3(aq) + HCl(aq) \rightarrow NH_4Cl(aq)$$


FB 1 is a dilute solution of ammonia, $NH_3(aq)$. It was prepared by measuring out 5.91 cm³ of the '.880 ammonia' and then adding distilled water until the solution had a volume of 1 dm³. **FB 2** is 0.100 mol dm⁻³ hydrochloric acid, HCl(aq). bromophenol blue indicator

(a) Method

- Fill the burette with FB 2.
- Use the pipette to transfer 25.0 cm³ of **FB 1** into a conical flask.
- Add a few drops of bromophenol indicator.
- Perform a **rough titration** and record your burette readings in the space below.

The r	ough	titre	is	 cm ³
				 • • • •

- Carry out as many accurate titrations as you think necessary to achieve consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of FB 2 added in each accurate titration.

[7]

(b) From your accurate titration results, obtain a suitable value to be used in your calculations. Show clearly how you obtained this value.

25.0 cm³ of **FB 1** required cm³ of **FB 2**. [1]

(c)	Calculation	ons
-----	-------------	-----

	ow your working and appropriate significant figures in the final answer to each step of your culations.
(i)	Calculate the number of moles of hydrochloric acid present in the volume of FB 2 calculated in (b) .
	moles of HC1 = mol
(ii)	Use your answer to (i) to determine the number of moles of ammonia present in 25.0 cm³ of FB 1 , pipetted into the conical flask.
	moles of NH ₃ = mol
(iii)	Use your answer to (ii) to calculate the concentration, in mol dm ⁻³ , of the diluted ammonia,
	FB 1.
	concentration of NH ₃ (diluted) in FB 1 = mol dm ⁻³
(iv)	Use your answer to (iii) and the information on page 1 to calculate the concentration, in $moldm^{-3}$, of '.880 ammonia'.
	concentration of '.880 ammonia' = mol dm ⁻³ [3]
con '.88 (If	student analysed a different sample of concentrated ammonia and determined the centration to be 15.0 mol dm ⁻³ . Calculate the percentage difference in concentration of the 0 ammonia' you have determined compared with that of the student. You have been unable to complete the calculation, assume the concentration of 0 ammonia' was 9.35 mol dm ⁻³ . This is not the correct value.)

[Total: 12]

percentage difference in concentration = % [1]