EXPERIMENT NO. 12

When an organic acid, RCOOH, is neutralised by an alkali an exothermic reaction takes place. You will determine the enthalpy change of neutralisation, ΔH , for the following reaction.

$$RCOOH(aq) + NaOH(aq) \rightarrow RCOONa(aq) + H2O(I)$$

In this equation R is an alkyl group.

FA 3 is a solution containing 120.1 g dm⁻³ of RCOOH.

FA 4 is aqueous sodium hydroxide, NaOH.

(a) Method

Experiment 1

- Support the cup in the 250 cm³ beaker.
- Use the 25 cm³ measuring cylinder to transfer 25.0 cm³ of **FA 3** into the cup.
- Measure and record the temperature of this **FA 3**. Rinse the thermometer.
- Place 25.0 cm³ of **FA 4** into the 50 cm³ measuring cylinder.
- Measure and record the temperature of the FA 4 in the measuring cylinder. Rinse the thermometer.
- Tip the **FA 4** from the measuring cylinder into the cup. Stir, then measure and record the highest temperature reached.
- Calculate and record the average initial temperature of FA 3 and FA 4.
- Calculate and record the difference between the average initial temperature and the highest temperature reached.
- Rinse and dry the cup for use in **Experiment 2**.

Experiment 2

- Repeat Experiment 1 using 50.0 cm³ of FA 3 and FA 4. You will need to use the 25 cm³ measuring cylinder twice to measure the FA 3.
- Calculate and record the average initial temperature of FA 3 and FA 4.
- Calculate and record the difference between the average initial temperature and the highest temperature reached.

(b)	Cal	culations
	(i)	Calculate the energy released in Experiment 1 . (Assume that 4.2J of energy changes the temperature of 1.0 cm³ of solution by 1.0 °C.)
		energy released = J [1]
	(ii)	Calculate the number of moles of RCOOH used in Experiment 1 . Assume that the relative molecular mass, $M_{\rm r}$, of RCOOH is 122. Show your working.
		moles of RCOOH = mol [2]
((iii)	Calculate the enthalpy change of neutralisation, ΔH , of RCOOH. Assume that the sodium hydroxide is in excess.
		enthalpy change of neutralisation of RCOOH = kJ mol $^{-1}$ sign value [1]
(c)	Eac	ch measuring cylinder can be read to an accuracy of $\pm 0.5\text{cm}^3$.
		culate the total maximum percentage error in the volumes of solution measured in each of periments 1 and 2.
	Exp	periment 1
	Ev	total maximum percentage error = %
	⊏Xľ	periment 2

total maximum percentage error = %

Suggest how the temperature rise when using HC l would compare to the temperature rise recorded in (a). Assume all volumes and concentrations of solutions, in mol dm $^{-3}$, are the same.
Explain your answer by considering the chemical bonds involved.
[2]
[Total: 12]

(d) A student repeated both experiments in (a) using hydrochloric acid in place of RCOOH.