EXPERIMENT NO. 18

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 Iron(II) sulfate crystals, $FeSO_4 \cdot xH_2O$, contain water of crystallisation. You will carry out a titration to determine the value of x in the formula, where x is an integer. A solution containing a known mass of the crystals will be titrated with acidified aqueous potassium manganate(VII) of known concentration.

$$5Fe^{2+}(aq) + MnO_4^{-}(aq) + 8H^+(aq) \rightarrow 5Fe^{3+}(aq) + Mn^{2+}(aq) + 4H_2O(I)$$

FA 1 contains 26.52 g dm⁻³ of hydrated iron(II) sulfate, FeSO₄•xH₂O.

FA 2 is 0.0200 mol dm⁻³ potassium manganate(VII), KMnO₄.

FA 3 is dilute sulfuric acid, H₂SO₄.

(a) Method

- Fill the burette with **FA 2**.
- Pipette 25.0 cm³ of **FA 1** into a conical flask.
- Use the 25 cm³ measuring cylinder to transfer 25 cm³ of **FA 3** into the same conical flask.
- Carry out a rough titration and record your burette readings in the space below.

final	burette	reading /cm³	25.90	
initral	burette	reading /cm³	0.60	9 0 0
titre /cm3			25.30	The rough titre is 25.30 cm ³ .

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the accuracy of your practical work.
- Record in a suitable form below all your burette readings and the volume of FA 2 added in each accurate titration.

final burette reading/cm3	27.20	30.90	
initial burette reading/cm3	2.60	6.30	
titre /cm³	24.60	24.60	
best titres	\	V	

I	
II	
III	
IV	
V	
VI	
VII	

(b) From your accurate titration results, obtain a suitable value to be used in your calculations. Show clearly how you obtained this value.

(c) Calculations

- (i) Give your answers to (c)(ii), (c)(iii) and (c)(iv) to an appropriate number of significant figures. [1]
- (ii) Calculate the number of moles of potassium manganate(VII) present in the volume of FA 2 calculated in (b).

$$n = C V$$

$$= 0.0200 \times \frac{34.60}{1000}$$

moles of KMnO₄ =
$$4 \cdot 92 \times 10^{-4}$$
 mol [1]

(iii)

Calculate the number of moles of iron(II) sulfate present in 1.00 dm³ of **FA 1**.

$$\begin{cases}
Fe^{2+} : KM_nO_4 & C = \frac{n}{V} = \frac{9.46 \times 10^{-3}}{25.01000} \\
X : 4.92 \times 10^{-4}
\end{cases}$$
moles of FeSO₄ = $\frac{0.0984}{25.0000}$ mol [1]

ples of FeSO₄ =
$$0.0984$$
 mol [1

(iv) Calculate the mass of iron(II) sulfate present in $1.00\,\mathrm{dm^3}$ of FA 1.

mass of FeSO₄ =
$$\frac{14.95}{1}$$
 g [1]

(v) Calculate the value of x in $FeSO_4 \cdot xH_2O$.

Calculate the value of x in FeSO₄•xH₂O.

mass of
$$H_aO = FeSO_4$$
•xH_aO - $FeSO_4$ |
$$= 26.52 - 14.95$$

$$1 - 11.57$$

$$1 - 1 = 6.53 \approx 7$$

Note the value of x in FeSO₄•xH₂O.

FeSO₄: H_aO

$$= 26.53 \approx 7$$

$$0.643 m \approx 7$$

$$1 = 6.53 \approx 7$$

$$x = 7$$

$$x = 7$$
[2]

FeSO4:
$$H_2O$$
0.0984 m8: 0.643 m8
1 m8: \times
1 = 6.53 \approx 7

$$x = \dots \qquad 7$$
 [2]

State the effect, on the value of x calculated in $(c)(v)$, if some of your sample of FA 1 oxidised before you carried out the titration. Explain your answer.							
Value	J	X u	sill be	greater	be cause	, J	
less	VSlume	of KM	In Ou SO	less	number of	mdes A	
		ν	and		V	D	
water.						(51	
						[~]	

(d) Iron(II) sulfate in solution is readily oxidised by air to form iron(III) sulfate.

[Total: 16]