EXPERIMENT NO. 18

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 Iron(II) sulfate crystals, $FeSO_4 \cdot xH_2O$, contain water of crystallisation. You will carry out a titration to determine the value of x in the formula, where x is an integer. A solution containing a known mass of the crystals will be titrated with acidified aqueous potassium manganate(VII) of known concentration.

$$5Fe^{2+}(aq) + MnO_4^{-}(aq) + 8H^{+}(aq) \rightarrow 5Fe^{3+}(aq) + Mn^{2+}(aq) + 4H_2O(I)$$

FA 1 contains 26.52 g dm⁻³ of hydrated iron(II) sulfate, FeSO₄•xH₂O.

FA 2 is 0.0200 mol dm⁻³ potassium manganate(VII), KMnO₄.

FA 3 is dilute sulfuric acid, H₂SO₄.

(a) Method

- Fill the burette with FA 2.
- Pipette 25.0 cm³ of **FA 1** into a conical flask.
- Use the 25 cm³ measuring cylinder to transfer 25 cm³ of **FA 3** into the same conical flask.
- Carry out a rough titration and record your burette readings in the space below.

The rough	titre is	3	cm ³
1110104911			•

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the accuracy of your practical work.
- Record in a suitable form below all your burette readings and the volume of FA 2 added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	

(b)	From your accurate titration results, obtain a suitable value to be used in your calculations. Show clearly how you obtained this value.				
		25.0 cm ³ of FA 1 required cm ³ of FA 2 . [1]			
(c)	Ca	Iculations			
	(i)	Give your answers to (c)(ii) , (c)(iii) and (c)(iv) to an appropriate number of significant figures.			
	(ii)	Calculate the number of moles of potassium manganate (VII) present in the volume of ${\bf FA~2}$ calculated in ${\bf (b)}$.			
		moles of KMnO ₄ = mol [1]			
((iii)	Calculate the number of moles of iron(II) sulfate present in 1.00 dm³ of FA 1 .			
		moles of FeSO ₄ = mol [1]			
((iv)	Calculate the mass of iron(II) sulfate present in 1.00 dm³ of FA 1 .			
		mass of FeSO ₄ = g [1]			
	(v)	Calculate the value of x in $FeSO_4 \cdot xH_2O$.			
		x = [2]			

State the effect, on the value of x calculated in $(c)(v)$, if some of your sample oxidised before you carried out the titration. Explain your answer.	of FA 1 had
	[2]
	[Total: 16]

(d) Iron(II) sulfate in solution is readily oxidised by air to form iron(III) sulfate.