EXTRA LAB#1

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 Washing soda consists of hydrated sodium carbonate, Na₂CO₃•10H₂O. When it is stored it loses some of its water of crystallisation to leave Na₂CO₃•xH₂O. Since water has been lost *x* is no longer an integer.

You will carry out a titration to determine the value of x. You will titrate a solution of the sodium carbonate with hydrochloric acid.

The equation for the reaction is shown.

$$Na_2CO_3 \cdot xH_2O(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + CO_2(aq) + (x+1)H_2O(l)$$

FB 1 is an aqueous solution containing 11.30 g dm⁻³ of Na₂CO₃•xH₂O.

FB 2 is 0.100 mol dm⁻³ hydrochloric acid, HC*l*.

bromophenol blue indicator

(a) Method

- Fill the burette with **FB 2**.
- Pipette 25.0 cm³ of **FB 1** into a conical flask.
- Add a few drops of bromophenol blue indicator.
- Carry out a rough titration and record your burette readings in the space below.

The rough	titre	is	 cm ³

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure your recorded results show the precision of your practical work.
- Record in a suitable form, in the space below, all of your burette readings and the volume of FB 2 added in each accurate titration.

(b)		om your accurate titration results, obtain a value for the volume of FB 2 to be used in your culations. Show clearly how you obtained this value.
		25.0 cm ³ of FB 1 required cm ³ of FB 2 . [1]
(c)	Ca	Iculations
	(i)	Give your answers to (c)(ii) , (c)(iii) and (c)(iv) to an appropriate number of significant figures.
	(ii)	Calculate the number of moles of hydrochloric acid present in the volume of FB 2 you calculated in (b) .
		moles of HC1 = mol [1]
	(iii)	Use the equation on page 1, and your answer to (c)(ii), to calculate the concentration, in $mol dm^{-3}$, of $Na_2CO_3 \cdot xH_2O$ present in FB 1 .
		concentration of Na ₂ CO ₃ •xH ₂ O = mol dm ⁻³ [1]
((iv)	Calculate the value of x in this sample of $Na_2CO_3 \cdot xH_2O$.
		Show your working.
		x =[3]
		[Total: 14]