EXTRA LAB#2

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 Group 1 metal carbonates have the formula M_2CO_3 . The identity of the metal ion, M^+ , may be determined by a gravimetric method. The metal carbonate is reacted with excess acid and the mass of carbon dioxide given off is measured.

$$\mathbf{M}_2 CO_3(s) + 2HCl(aq) \rightarrow 2\mathbf{M}Cl(aq) + H_2O(l) + CO_2(g)$$

FA 1 is a Group 1 metal carbonate, M_2CO_3 . **FA 2** is 2.0 mol dm⁻³ hydrochloric acid, HCl.

(a) Method

- Use the 25 cm³ measuring cylinder to transfer 25.0 cm³ of **FA 2** into a conical flask. Weigh the flask with the acid and record the mass.
- Weigh the container with FA 1 and record the mass.
- Carefully tip all of FA 1 into the acid in the conical flask. Swirl the contents of the flask and leave the flask to stand.
- Weigh the container with any residual FA 1. Record the mass.
- Calculate and record the mass of **FA 1** added to the conical flask.
- Calculate and record the theoretical initial mass of flask + acid + FA 1.
- Swirl the flask occasionally while leaving it to stand for approximately 5 minutes.
- Weigh the flask and contents and record this mass.
- Calculate and record the mass of carbon dioxide given off during the experiment.

Results

I II III IV

(b) Calculations	
(i)	Calculate the number of moles of carbon dioxide given off in the experiment.
(ii)	moles of CO_2 =
(iii)	$\textit{M}_{\rm r} \text{ of } \mathbf{M}_2 {\rm CO}_3 =$
(c) On	$m{M}^{+}$ is [1] see source of error in this experiment is the solubility of carbon dioxide in water.
(i)	Suggest one modification, to the method in (a) , to reduce the solubility of carbon dioxide in the solution in the flask.
(ii)	An assumption made in the method in (a) is that the acid is in excess. Show by calculation that this assumption is true.
	[2]

[Total: 10]